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Abstract - Data mining, the extraction of hidden predictive information from large databases, is a powerful new 
technology with great potential to help companies focus on the most important information in their data 
warehouses. In this paper, we propose an idea for monitoring and grouping the events that occur in tweet streams. 
This may help us to scour databases for hidden patterns, finding predictive information that experts may miss 
because it lies outside their expectations. We capture the events using four operations (create, absorb, split and 
merge). The posted tweet is grouped by a keyword in that post. When a tweet is posted it is compared by another 
post and forms a group using the words in the tweet. In addition, we also find the nearest neighbour who lies in the 
similar line based on the tweets posted by them. Moreover, we propose a novel event indexing structure, called 
Multi-layer Inverted List (MIL), to manage dynamic event databases for the acceleration of large-scale event search 
and update. Extensive experiments have been conducted on a large-scale real-life tweet dataset. The results 
demonstrate the promising performance of our event indexing and monitoring methods on both efficiency and 
effectiveness.   
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I. INTRODUCTION 

Data mining, the extraction of hidden predictive information 

from large databases, is a powerful new technology with great 

potential to help companies focus on the most important 

information in their data warehouses. Data mining tools 

predict future trends and behaviours, allowing businesses to 

make proactive, knowledge-driven decisions. The automated, 

prospective analyses offered by data mining move beyond the 

analyses of past events provided by retrospective tools typical 

of decision support systems. Data mining tools can answer 

business questions that have traditionally been too time 

consuming to resolve. They scour databases for hidden 

patterns, finding predictive information that experts may miss 

because it lies outside their expectations. 

 

Most companies already collect and refine massive quantities 

of data. Data mining techniques can be implemented rapidly 

on existing software and hardware platforms to enhance the 

value of existing information resources, and can be integrated 

with new products and systems as they are brought on-line. 

When implemented on high performance client/server or 

parallel processing, computers, data mining tools can analyse 

massive databases to deliver answers to questions such as, 

"Which clients are most likely to respond to my next 

promotional mailing, and why?" 

 

Examples of profitable applications illustrate its relevance to 

today’s business environment as well as a basic description of 

how data warehouse architectures can evolve to deliver the 

value of data mining to end users. Growing Data Volume The 

main reason for necessity of automated computer systems for 

intelligent data analysis is the enormous volume of existing 

and newly appearing data that require processing. The amount 

of data accumulated each day by various businesses, scientific, 

and governmental organizations around the world are daunting. 

According to information from the GTE research center, only 

scientific organizations store each day about 1 TB (terabyte!) 

of new information. 

 

Two other problems that surface when human analyst process 

data are the inadequacy of the human brain when searching for 

complex multifactor dependencies in data, and the lack of 

objectivity in such an analysis. A human expert is always a 

hostage of the previous experience of investigating other 

systems. Sometimes this helps, sometimes this hurts, but it is 

almost impossible to get rid of this fact.  

 

One additional benefit of using automated data mining 

systems is that this process has a much lower cost. While data 
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mining does not eliminate human participation in solving the 

task completely, it significantly simplifies the job and allows 

an analyst who is not a professional in statistics and 

programming to manage the process of extracting knowledge 

from data. 

 

Data mining process for monitoring and grouping events. Such 

initiation helps to handle with posting the tweets in the wall. 

Tweets includes both text and images with jpg, png and gif 

image formats. The short format of the tweet is a defining 

characteristic of the service, allowing informal collaboration 

and quick information sharing that provides relief. Its based on 

social networking which is used for both personal and business 

purpose. Its used to share our feelings in the wall via post. For 

business its used as a blog to communicate. The tweets posted 

are automatically grouped using their respective title. The post 

which is not related to the title is removed. Remaining are 

grouped. Data mining process for monitoring events. Such 

initiation helps to handle sharing the image without losing the 

original quality. 

 

Tweet streams provide a variety of real-life and real-time 

information on social events that dynamically change over 

time. In this paper, Although social event detection has been 

actively studied, how to efficiently monitor evolving events 

from continuous tweet streams remains open and challenging. 

However, this approach does not track the evolution of events, 

nor does it address the issue of efficient monitoring in the 

presence of a large number of events.  

 

In this project, we capture the dynamics of events using four 

event operations (create, absorb, split and merge) of tweets, 

which can be effectively used to monitor evolving events. First 

the post is created. The post includes images. Then, the post is 

absorbed and monitored. The post is then splitted to groups 

and members. Merged when search is done. The posted tweet 

is grouped by a keyword in that post. Tweet is compared by 

text summerization and is grouped using the keyword. When a 

tweet is posted it is compared by another post and forms a 

group using the words in the tweet and another post comes in 

it is also compared and grouped. The post doesn’t match the 

title is belong to a member. 

 

II. RELATED WORK 

 

Twitter received much attention in recent years. Twitter data is 

openly available, motivating research in social interactions on 

the Web, micro-blogging and data mining. At the same time, 

Twitter differs from other blogging software due to its shorter 

messages, facilitating up-to-date publishing. Researchers have 

been motivated to analyze Twitter as a source of sensory 

information provided by Twitter users, reacting on real-life 

events such as social events or natural occurrences as 

earthquakes . The most prominent works investigating event 

detection on Twitter are based on statistical  and machine 

learning techniques. Past works involved classification and 

particle filtering methods to event detection from Twitter 

messages, reporting a significant accuracy in detecting 

earthquakes. Another proposed an approach to group event-

related tweets in real-time applying Hidden Markov Models. 

These approaches can be used for well-structured events, but 

requires prior knowledge on events, participating athletes and 

defined event-related hashtags. [1] applied an online clustering 

approach, grouping tweets with similar content together. After 

manually labeling clusters as event-related and not event-

related, they trained a Naive Bayes text classifier for 

identifying event-related tweets. This approach, however, 

requires calculating pairwise similarities before actually 

identifying tweets as related to events. [2] used named entity 

recognition and decision trees, calculating the quantity of 

found named entities in time. Other works identify event 

content using other information sources besides Twitter.  

 

Event Detection. Recently, considerable efforts have been 

devoted to summarizing online textual streams such as tweets 

in the form of events. There are various ways to give a 

taxonomy of all these related works. As shown in [11], 

according to the detection task, the techniques can be 

classified into retrospective event detection (RED) [12] and 

new event detection (NED) [13]. Based on the event type, they 

are categorized into specified [14] and unspecified [15] event 

detection. The former relies on the prior available information 

on the event of interest, while the latter detects events from the 

bursts or trends in Twitter streams. Depending on the detection 

method, there are supervised [16] and unsupervised [17] 

algorithms. In this paper, we focus on NED, unspecified and 

unsupervised event detection. We under-take a brief review of 

several representative studies in the same category. To capture 

emerging events, [18] identifies the locally dense sub-graphs 

from a graph under a streaming model. In [17], daily signals 

for each word are constructed by applying wavelet analysis. 

The words are clustered into events using a modularity-based 

graph partitioning algorithm. This kind of daily detected 

events lose track of their developments over multiple days. In 

[19], the single-pass incremental clustering algorithm is 

adopted for event detection and the threshold is dynamically 

generated by the statistics of existing clusters. However, the 

influence of cluster center shift is ignored, thus it fails to 

capture the dynamics of events. Event Evolution. Most of the 

work on event evolution tracks the details of one specified 

event in real time. For example, in [1], the authors track the 

representative tweets of an event and mine geographical 
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diffusion trajectory on the map. Instead of tracking one 

individual event, we focus on event evolution, aiming to 

monitor the event evolution among relevant events. To the 

best of our knowledge, [5] is the only effort to monitor event 

evolution. In their work, a subgraph-by-subgraph incremental 

tracking framework is proposed for event monitoring. A 

skeletal graph is designed to summarize the information within 

a fading time window in a dynamic network. However, the 

evolution graph is constructed by treating each event snapshot 

as a node and the trajectory between snapshots as paths. So the 

evolution of an event is only checked when the time window 

moves. This time window strategy faces the problem that long 

time window length may lead to losing track of highly 

dynamic events’ evolutions and short time window length will 

lead to storing redundant snapshots for steady events. 

 

Indexing for Twitter. Unlike traditional text indexing, the 

indexing structure for Twitter should be capable of ingesting 

the data rapidly and support efficient search and quick update 

on large-scale data. In [24], a retrieval engine which supports 

Twitter’s real-time search is introduced. The authors focus on 

how to organize the inverted list indexing to support low-

latency, high-throughput retrieval and how to implement 

concurrency management. In [25], a query-based classification 

approach is designed to distinguish between tweets that may 

appear as a search result with high probability and the noisy 

tweets. The former will be indexed by the inverted list in real-

time, and the latter will be indexed in a background batch 

scheme. As we can see, all these indexing struc-tures are 

constructed to index tweets and the search algorithms are 

designed to support fast tweet search on tweets data not event 

search on the detected events (clusters of tweets). The 

difference is that only a limited number of words exist in one 

tweet (even with weights) and the tweets search uses a boolean 

query language, i.e., search tweets containing (or not 

containing) specified search term(s); while for events, there 

might be hundreds of words in one event and only a few of 

them are dominant words (i.e., words with much higher weight 

than others). Moreover, event search is nearest neighbour 

search which is more complex than boolean queries. To the 

best of our knowledge, only one event indexing structure 

named variable dimensional extendible hash (VDEH)  has 

been proposed before. Given a query tweet, they use the 

fraction of matched tweets in an event to calculate the 

similarity between a query tweet and an event. VDEH stores 

highly similar tweets together in one bucket of the hash to 

accelerate the comparison between the query tweet and each 

event. Besides indexing, another approach for improving 

efficiency is the distributed processing topology. However, for 

the highly dynamic Twitter data stream, detecting events 

immediately after the tweets are posted is of great importance. 

Unlike the distributed system, our proposed in-memory 

indexing structure can process data in real time by avoiding 

disk IO. 

 

Our work in this paper can be distinguished from previous 

work in several ways. First, in addition to event detection, we 

aim to track evolving events over time. Unlike previous work 

which checks the evolution patterns only when the time 

window moves, we record the evolution patterns and identify 

event relationships whenever events evolve. Second, we 

design an indexing structure for event databases to support 

event search and update. Although VDEH has been proposed 

to index events, the actual data indexed by VDEH contains all 

the tweets in each event, which leads to large storage cost. In 

contrast, ours is an in-memory indexing structure which stores 

only the summary representation of the event. By avoiding the 

IO cost, we are able to process the highly dynamic tweets data 

in real time. Third, we design new and tight upper bounds on 

the Cosine similarity between tweets and events to quickly 

reduce the search space for nearest neighbour search. Fourth, 

existing work on indexing tweets mostly focuses on 

organizing the quickly incoming tweets while our work aims 

to improve the performance of searching the detected events 

given tweets. 

 

III. EXISTING SYSTEM 

 

Social event detection has been actively studied, how to 

efficiently monitor evolving events from continuous tweet 

streams remains open and challenging. However, this 

approach does not track the evolution of events, nor does it 

address the issue of efficient monitoring in the presence of a 

large number of events. Using Biometric function to detecting 

the face. Existing system event detection which is less 

efficient. Existing system fail to monitor event evolutions in 

real time. Existing system performance is low. Existing system 

fail to track all the events which is posted. We can see major 

two issues in the existing system. First, once a tweet is posted 

it is not splitted into members and groups. Second, it lacks in 

grouping the tweets. To  group a tweets it compares all the 

tweets. Which takes more time. Also there is no option for 

viewing the nearest neighbour who matches with our tweets. 

IV.  PROPOSED SYSTEM  

  

In this system we are using text summerization to compare the 

text and group the tweet. We use four operations to capture the 

dynamic events evolution pattern, including creation of tweets, 

absorption of tweets, spliting of tweets and merge tweets. 

Implementation of fast search. Event detection and Tracking in 

twitter is more efficient using our system. 
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We use four event operations posting of tweets, absorb the 

posted tweets, splitting of posted tweets and merging of posted 

tweets. We propose a novel event indexing structure, referred 

to as the Multilayer Inverted List, to facilitate event search and 

event update for large-scale, dynamic event database. We 

present efficient algorithms for nearest neighbor search with 

upper bound pruning to avoid a large proportion of expensive 

event similarity computations. We conduct an extensive 

performance study on dynamic event databases generated from 

over 10 million tweets and the results demonstrate the 

superiority of our methods over existing methods. 

 

Here we use a algorithm named New Tweet algorithm. The 

efficiency of our approach is achieved via this algorithm. It is 

based on the fact that it groups the tweets based on the 

keyword. The grouped tweets are put under one single group 

and that group is named relevant to the keyword. The search 

that it makes is the finest approach. It works on the fact that no 

words with two or three characters can be a keyword or an 

important word that would represent the tweet. Hence, those 

words are ignored by this algorithm. It processes the tweets in 

three steps namely process a new tweet, merge event, nearest 

neighbor search. 

 

Processing a new tweet is the first step in this process. The 

user can post their tweets in their wall. The tweets can be of 

any type either it can be a text or an image. In both cases, the 

first step to be processed while handling the tweets is 

absorbing the tweets. The tweets that are posted are absorbed 

by the system. Each user’s activity will be monitored by the 

administrator. In case of a new tweet the tweet should be 

absorbed first then it should be read character by character 

where the words with two letters and three letters are ignored. 

The words greater than three letters are compared with the 

keywords that are already stored in the database. Based on the 

keywords the class of the tweet is found and a new group is 

created and the following tweet is posted in that group. The 

user will receive notifications regarding the same. 

 

Merge event follows the above. This is used in the 

incremental event evolution technique. The basic idea behind 

this is that once a new tweet is posted across the network it is 

processed as the same way that a new tweet is processed. 

Except that, here the tweets are just simply merged to the 

existing  groups.   

 

For a new arriving tweet or newly split event, we are first 

interested in identifying its most similar event from the 

existing events indexed by MIL, corresponding to nearest 

neighbour search. To reduce the computational cost, it is 

critical to design an effective similarity upper bound for quick 

candidate pruning to avoid full similarity computations. Here 

the traversing the indexing structure MIL, the maximum 

number of layers reached by the query tweet is processed. The 

time complexity of the algorithm is linear to the number of 

events that share at least one common word with the query. 

However, the proposed upper bound pruning strategy starting 

from lower to upper layers can greatly reduce the search cost 

by saving a large number of the Cosine similarity 

computations. As the query tweet’s length increases, such 

reduction becomes more significant since the Cosine similarity 

computation gets more expensive. This will be further verified 

by our experiment results. 

 

V. CONCLUSIONS  

 

In this paper, we have presented a novel event monitoring 

method along with a multi-layer inverted indexing structure to 

efficiently and effectively index evolving events from tweet 

streams. Four operations are designed to capture the dynamics 

of events over time. In addition a novel approach have been 

specified to find the nearest neighbour who exist with the 

similar type of tweets as that of ours. With the consideration of 

time, the event detection performance will be further improved 

in both accuracy and scalability. 
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