
 International Journal of Contemporary Research in Computer Science and Technology (IJCRCST) e-ISSN: 2395-5325
Volume2, Issue 3 (March ’2016)

 IJCRCST © 2016 | All Rights Reserved www.ijcrcst.com

691

MONITORING AND CLUSTERING EVENTS IN KNOWLEDGE
ENGINEERING

D.Priya,

UG Scholar,
Computer Science and Engineering,

Dhanalakshmi College of Engineering,
Chennai,India.

C.Kayalvizhi,
Assistant Professor,

Computer Science and Engineering,
Dhanalakshmi College of Engineering,

Chennai,India.

Abstract - Data mining, the extraction of hidden predictive information from large databases, is a powerful new
technology with great potential to help companies focus on the most important information in their data
warehouses. In this paper, we propose an idea for monitoring and grouping the events that occur in tweet streams.
This may help us to scour databases for hidden patterns, finding predictive information that experts may miss
because it lies outside their expectations. We capture the events using four operations (create, absorb, split and
merge). The posted tweet is grouped by a keyword in that post. When a tweet is posted it is compared by another
post and forms a group using the words in the tweet. In addition, we also find the nearest neighbour who lies in the
similar line based on the tweets posted by them. Moreover, we propose a novel event indexing structure, called
Multi-layer Inverted List (MIL), to manage dynamic event databases for the acceleration of large-scale event search
and update. Extensive experiments have been conducted on a large-scale real-life tweet dataset. The results
demonstrate the promising performance of our event indexing and monitoring methods on both efficiency and
effectiveness.

Keywords: event monitoring, multi-layer inverted list, nearest neighbour.

I. INTRODUCTION

Data mining, the extraction of hidden predictive information

from large databases, is a powerful new technology with great

potential to help companies focus on the most important

information in their data warehouses. Data mining tools

predict future trends and behaviours, allowing businesses to

make proactive, knowledge-driven decisions. The automated,

prospective analyses offered by data mining move beyond the

analyses of past events provided by retrospective tools typical

of decision support systems. Data mining tools can answer

business questions that have traditionally been too time

consuming to resolve. They scour databases for hidden

patterns, finding predictive information that experts may miss

because it lies outside their expectations.

Most companies already collect and refine massive quantities

of data. Data mining techniques can be implemented rapidly

on existing software and hardware platforms to enhance the

value of existing information resources, and can be integrated

with new products and systems as they are brought on-line.

When implemented on high performance client/server or

parallel processing, computers, data mining tools can analyse

massive databases to deliver answers to questions such as,

"Which clients are most likely to respond to my next

promotional mailing, and why?"

Examples of profitable applications illustrate its relevance to

today’s business environment as well as a basic description of

how data warehouse architectures can evolve to deliver the

value of data mining to end users. Growing Data Volume The

main reason for necessity of automated computer systems for

intelligent data analysis is the enormous volume of existing

and newly appearing data that require processing. The amount

of data accumulated each day by various businesses, scientific,

and governmental organizations around the world are daunting.

According to information from the GTE research center, only

scientific organizations store each day about 1 TB (terabyte!)

of new information.

Two other problems that surface when human analyst process

data are the inadequacy of the human brain when searching for

complex multifactor dependencies in data, and the lack of

objectivity in such an analysis. A human expert is always a

hostage of the previous experience of investigating other

systems. Sometimes this helps, sometimes this hurts, but it is

almost impossible to get rid of this fact.

One additional benefit of using automated data mining

systems is that this process has a much lower cost. While data

 International Journal of Contemporary Research in Computer Science and Technology (IJCRCST) e-ISSN: 2395-5325
Volume1, Issue 8 (November ’2015)

 IJCRCST © 2016 | All Rights Reserved www.ijcrcst.com

692

mining does not eliminate human participation in solving the

task completely, it significantly simplifies the job and allows

an analyst who is not a professional in statistics and

programming to manage the process of extracting knowledge

from data.

Data mining process for monitoring and grouping events. Such

initiation helps to handle with posting the tweets in the wall.

Tweets includes both text and images with jpg, png and gif

image formats. The short format of the tweet is a defining

characteristic of the service, allowing informal collaboration

and quick information sharing that provides relief. Its based on

social networking which is used for both personal and business

purpose. Its used to share our feelings in the wall via post. For

business its used as a blog to communicate. The tweets posted

are automatically grouped using their respective title. The post

which is not related to the title is removed. Remaining are

grouped. Data mining process for monitoring events. Such

initiation helps to handle sharing the image without losing the

original quality.

Tweet streams provide a variety of real-life and real-time

information on social events that dynamically change over

time. In this paper, Although social event detection has been

actively studied, how to efficiently monitor evolving events

from continuous tweet streams remains open and challenging.

However, this approach does not track the evolution of events,

nor does it address the issue of efficient monitoring in the

presence of a large number of events.

In this project, we capture the dynamics of events using four

event operations (create, absorb, split and merge) of tweets,

which can be effectively used to monitor evolving events. First

the post is created. The post includes images. Then, the post is

absorbed and monitored. The post is then splitted to groups

and members. Merged when search is done. The posted tweet

is grouped by a keyword in that post. Tweet is compared by

text summerization and is grouped using the keyword. When a

tweet is posted it is compared by another post and forms a

group using the words in the tweet and another post comes in

it is also compared and grouped. The post doesn’t match the

title is belong to a member.

II. RELATED WORK

Twitter received much attention in recent years. Twitter data is

openly available, motivating research in social interactions on

the Web, micro-blogging and data mining. At the same time,

Twitter differs from other blogging software due to its shorter

messages, facilitating up-to-date publishing. Researchers have

been motivated to analyze Twitter as a source of sensory

information provided by Twitter users, reacting on real-life

events such as social events or natural occurrences as

earthquakes . The most prominent works investigating event

detection on Twitter are based on statistical and machine

learning techniques. Past works involved classification and

particle filtering methods to event detection from Twitter

messages, reporting a significant accuracy in detecting

earthquakes. Another proposed an approach to group event-

related tweets in real-time applying Hidden Markov Models.

These approaches can be used for well-structured events, but

requires prior knowledge on events, participating athletes and

defined event-related hashtags. [1] applied an online clustering

approach, grouping tweets with similar content together. After

manually labeling clusters as event-related and not event-

related, they trained a Naive Bayes text classifier for

identifying event-related tweets. This approach, however,

requires calculating pairwise similarities before actually

identifying tweets as related to events. [2] used named entity

recognition and decision trees, calculating the quantity of

found named entities in time. Other works identify event

content using other information sources besides Twitter.

Event Detection. Recently, considerable efforts have been

devoted to summarizing online textual streams such as tweets

in the form of events. There are various ways to give a

taxonomy of all these related works. As shown in [11],

according to the detection task, the techniques can be

classified into retrospective event detection (RED) [12] and

new event detection (NED) [13]. Based on the event type, they

are categorized into specified [14] and unspecified [15] event

detection. The former relies on the prior available information

on the event of interest, while the latter detects events from the

bursts or trends in Twitter streams. Depending on the detection

method, there are supervised [16] and unsupervised [17]

algorithms. In this paper, we focus on NED, unspecified and

unsupervised event detection. We under-take a brief review of

several representative studies in the same category. To capture

emerging events, [18] identifies the locally dense sub-graphs

from a graph under a streaming model. In [17], daily signals

for each word are constructed by applying wavelet analysis.

The words are clustered into events using a modularity-based

graph partitioning algorithm. This kind of daily detected

events lose track of their developments over multiple days. In

[19], the single-pass incremental clustering algorithm is

adopted for event detection and the threshold is dynamically

generated by the statistics of existing clusters. However, the

influence of cluster center shift is ignored, thus it fails to

capture the dynamics of events. Event Evolution. Most of the

work on event evolution tracks the details of one specified

event in real time. For example, in [1], the authors track the

representative tweets of an event and mine geographical

 International Journal of Contemporary Research in Computer Science and Technology (IJCRCST) e-ISSN: 2395-5325
Volume1, Issue 8 (November ’2015)

 IJCRCST © 2016 | All Rights Reserved www.ijcrcst.com

693

diffusion trajectory on the map. Instead of tracking one

individual event, we focus on event evolution, aiming to

monitor the event evolution among relevant events. To the

best of our knowledge, [5] is the only effort to monitor event

evolution. In their work, a subgraph-by-subgraph incremental

tracking framework is proposed for event monitoring. A

skeletal graph is designed to summarize the information within

a fading time window in a dynamic network. However, the

evolution graph is constructed by treating each event snapshot

as a node and the trajectory between snapshots as paths. So the

evolution of an event is only checked when the time window

moves. This time window strategy faces the problem that long

time window length may lead to losing track of highly

dynamic events’ evolutions and short time window length will

lead to storing redundant snapshots for steady events.

Indexing for Twitter. Unlike traditional text indexing, the

indexing structure for Twitter should be capable of ingesting

the data rapidly and support efficient search and quick update

on large-scale data. In [24], a retrieval engine which supports

Twitter’s real-time search is introduced. The authors focus on

how to organize the inverted list indexing to support low-

latency, high-throughput retrieval and how to implement

concurrency management. In [25], a query-based classification

approach is designed to distinguish between tweets that may

appear as a search result with high probability and the noisy

tweets. The former will be indexed by the inverted list in real-

time, and the latter will be indexed in a background batch

scheme. As we can see, all these indexing struc-tures are

constructed to index tweets and the search algorithms are

designed to support fast tweet search on tweets data not event

search on the detected events (clusters of tweets). The

difference is that only a limited number of words exist in one

tweet (even with weights) and the tweets search uses a boolean

query language, i.e., search tweets containing (or not

containing) specified search term(s); while for events, there

might be hundreds of words in one event and only a few of

them are dominant words (i.e., words with much higher weight

than others). Moreover, event search is nearest neighbour

search which is more complex than boolean queries. To the

best of our knowledge, only one event indexing structure

named variable dimensional extendible hash (VDEH) has

been proposed before. Given a query tweet, they use the

fraction of matched tweets in an event to calculate the

similarity between a query tweet and an event. VDEH stores

highly similar tweets together in one bucket of the hash to

accelerate the comparison between the query tweet and each

event. Besides indexing, another approach for improving

efficiency is the distributed processing topology. However, for

the highly dynamic Twitter data stream, detecting events

immediately after the tweets are posted is of great importance.

Unlike the distributed system, our proposed in-memory

indexing structure can process data in real time by avoiding

disk IO.

Our work in this paper can be distinguished from previous

work in several ways. First, in addition to event detection, we

aim to track evolving events over time. Unlike previous work

which checks the evolution patterns only when the time

window moves, we record the evolution patterns and identify

event relationships whenever events evolve. Second, we

design an indexing structure for event databases to support

event search and update. Although VDEH has been proposed

to index events, the actual data indexed by VDEH contains all

the tweets in each event, which leads to large storage cost. In

contrast, ours is an in-memory indexing structure which stores

only the summary representation of the event. By avoiding the

IO cost, we are able to process the highly dynamic tweets data

in real time. Third, we design new and tight upper bounds on

the Cosine similarity between tweets and events to quickly

reduce the search space for nearest neighbour search. Fourth,

existing work on indexing tweets mostly focuses on

organizing the quickly incoming tweets while our work aims

to improve the performance of searching the detected events

given tweets.

III. EXISTING SYSTEM

Social event detection has been actively studied, how to

efficiently monitor evolving events from continuous tweet

streams remains open and challenging. However, this

approach does not track the evolution of events, nor does it

address the issue of efficient monitoring in the presence of a

large number of events. Using Biometric function to detecting

the face. Existing system event detection which is less

efficient. Existing system fail to monitor event evolutions in

real time. Existing system performance is low. Existing system

fail to track all the events which is posted. We can see major

two issues in the existing system. First, once a tweet is posted

it is not splitted into members and groups. Second, it lacks in

grouping the tweets. To group a tweets it compares all the

tweets. Which takes more time. Also there is no option for

viewing the nearest neighbour who matches with our tweets.

IV. PROPOSED SYSTEM

In this system we are using text summerization to compare the

text and group the tweet. We use four operations to capture the

dynamic events evolution pattern, including creation of tweets,

absorption of tweets, spliting of tweets and merge tweets.

Implementation of fast search. Event detection and Tracking in

twitter is more efficient using our system.

 International Journal of Contemporary Research in Computer Science and Technology (IJCRCST) e-ISSN: 2395-5325
Volume1, Issue 8 (November ’2015)

 IJCRCST © 2016 | All Rights Reserved www.ijcrcst.com

694

We use four event operations posting of tweets, absorb the

posted tweets, splitting of posted tweets and merging of posted

tweets. We propose a novel event indexing structure, referred

to as the Multilayer Inverted List, to facilitate event search and

event update for large-scale, dynamic event database. We

present efficient algorithms for nearest neighbor search with

upper bound pruning to avoid a large proportion of expensive

event similarity computations. We conduct an extensive

performance study on dynamic event databases generated from

over 10 million tweets and the results demonstrate the

superiority of our methods over existing methods.

Here we use a algorithm named New Tweet algorithm. The

efficiency of our approach is achieved via this algorithm. It is

based on the fact that it groups the tweets based on the

keyword. The grouped tweets are put under one single group

and that group is named relevant to the keyword. The search

that it makes is the finest approach. It works on the fact that no

words with two or three characters can be a keyword or an

important word that would represent the tweet. Hence, those

words are ignored by this algorithm. It processes the tweets in

three steps namely process a new tweet, merge event, nearest

neighbor search.

Processing a new tweet is the first step in this process. The

user can post their tweets in their wall. The tweets can be of

any type either it can be a text or an image. In both cases, the

first step to be processed while handling the tweets is

absorbing the tweets. The tweets that are posted are absorbed

by the system. Each user’s activity will be monitored by the

administrator. In case of a new tweet the tweet should be

absorbed first then it should be read character by character

where the words with two letters and three letters are ignored.

The words greater than three letters are compared with the

keywords that are already stored in the database. Based on the

keywords the class of the tweet is found and a new group is

created and the following tweet is posted in that group. The

user will receive notifications regarding the same.

Merge event follows the above. This is used in the

incremental event evolution technique. The basic idea behind

this is that once a new tweet is posted across the network it is

processed as the same way that a new tweet is processed.

Except that, here the tweets are just simply merged to the

existing groups.

For a new arriving tweet or newly split event, we are first

interested in identifying its most similar event from the

existing events indexed by MIL, corresponding to nearest

neighbour search. To reduce the computational cost, it is

critical to design an effective similarity upper bound for quick

candidate pruning to avoid full similarity computations. Here

the traversing the indexing structure MIL, the maximum

number of layers reached by the query tweet is processed. The

time complexity of the algorithm is linear to the number of

events that share at least one common word with the query.

However, the proposed upper bound pruning strategy starting

from lower to upper layers can greatly reduce the search cost

by saving a large number of the Cosine similarity

computations. As the query tweet’s length increases, such

reduction becomes more significant since the Cosine similarity

computation gets more expensive. This will be further verified

by our experiment results.

V. CONCLUSIONS

In this paper, we have presented a novel event monitoring

method along with a multi-layer inverted indexing structure to

efficiently and effectively index evolving events from tweet

streams. Four operations are designed to capture the dynamics

of events over time. In addition a novel approach have been

specified to find the nearest neighbour who exist with the

similar type of tweets as that of ours. With the consideration of

time, the event detection performance will be further improved

in both accuracy and scalability.

REFERENCES

[1] Becker, H., Naaman, M., Gravano, L. “Beyond trending

topics: Real-world event identification on twitter. In”

Proceedings of the 5th International AAAI Conference

on Weblogs and Social Media (ICWSM), North

America, pp. 438-441, July 2011.

[2] Popescu, A., Pennacchiotti, M., Paranjpe, D.” Extracting

events and event descriptions from Twitter. In”

Proceedings of the 20th International Conference on

World Wide Web (WWW), pp. 105-106. ACM (2011).

[3] J. Allan, R. Papka, and V. Lavrenko, “On-line new event

detection and tracking,” in SIGIR, pp. 37–45, 1998.

[4] Y. Jie, L. Andrew, C. Mark, R. Bella, and P. Robert,

“Using social media to enhance emergency situation

awareness,” IEEE Intelligent Systems, vol. 27, no. 6, pp.

52–59, 2012.

[5] P. Lee, L. V. S. Lakshmanan, and E. E. Milios,

“Incremental cluster evolution tracking from highly

dynamic network data,” in ICDE, pp. 3–14, 2014.

[6] A. Gruenheid, X. L. Dong, and D. Srivastava,

“Incremental record linkage,” PVLDB, vol. 7, no. 9, pp.

697–708, 2014.

[7] H. Abdelhaq, C. Sengstock, and M. Gertz, “Eventweet:

 International Journal of Contemporary Research in Computer Science and Technology (IJCRCST) e-ISSN: 2395-5325
Volume1, Issue 8 (November ’2015)

 IJCRCST © 2016 | All Rights Reserved www.ijcrcst.com

695

Online localized event detection from twitter,” PVLDB,

vol. 6, no. 12, pp. 1326–1329, 2013.

[8] K. Massoudi, M. Tsagkias, M. de Rijke, and W.

Weerkamp, “Incorporat-ing query expansion and quality

indicators in searching microblog posts,” in ECIR, pp.

362–367, 2011.

[9] H. Becker, M. Naaman, and L. Gravano, “Beyond

trending topics: Real-world event identification on

twitter,” in ICWSM, 2011.

[10] J. Weng and B.-S. Lee, “Event detection in twitter,” in

ICWSM, pp. 401–408, 2011.

[11] J. Zobel and A. Moffat, “Inverted files for text search

engines,” ACM Comput. Surv., vol. 38, no. 2, 2006.

[12] M. Chang and C. K. Poon, “Efficient phrase querying

with common phrase index,” in ECIR, pp. 61–71, 2006.

[13] M. Pitts, S. Savvana, S. B. Roy, and V. Mandava,

“ALIAS: author disambiguation in microsoft academic

search engine dataset,” in EDBT, pp. 648–651, 2014,.

[14] M. Busch, K. Gade, B. Larson, P. Lok, S. Luckenbill,

and J. Lin, “Earlybird: Real-time search at twitter,” in

ICDE, pp. 1360–1369, 2012,.

[15] C. Chen, F. Li, B. C. Ooi, and S. Wu, “Ti: an efficient

indexing mechanism for real-time search on tweets,” in

SIGMOD, pp. 649– 660, 2011.

[16] X. Zhou and L. Chen, “Event detection over twitter

social media streams,” VLDB J., vol. 23, no. 3, pp. 381–

400, Jun. 2014.

[17] R. McCreadie, C. Macdonald, I. Ounis, M. Osborne, and

S. Petrovic, “Scalable distributed event detection for

twitter,” in Int. Conf. on Big Data, pp. 543–549, 2013.

[18] C. D. Manning, P. Raghavan, and H. Schutze,¨

Introduction to Information Retrieval. Cambridge

University Press, 2008.

[19] S. Unankard, X. Li, and M. Sharaf, “Emerging event

detection in social networks with location sensitivity,”

World Wide Web, pp. 1–25, 2014.

[20] M. Steinbach, G. Karypis, and V. Kumar, “A comparison

of document clustering techniques,” in In KDD

Workshop on Text Mining, 2000.

[21] J. Han, J. Pei, and Y. Yin, “Mining frequent patterns

without candidate generation,” in SIGMOD, pp. 1–12,

2000.

[22] R. Fagin, A. Lotem, and M. Naor, “Optimal aggregation

algorithms for middleware,” in PODS, pp. 102–113,

2001.

[23] A. C. Awekar and N. F. Samatova, “Fast matching for all

pairs similarity search.” in Web Intelligence, pp. 295–

300, 2009.

[24] E. Cohen, “Decay models,” in Encyclopedia of Database

Systems, pp. 757–761, 2009.

