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Abstract: When formulating linear programming problem, variables should have been regarded as taking integer 

values. Problems in which this is the case are called integer program. In this paper a new algorithm to solve integer 

linear programming problems is given. This algorithm consists of two steps. In step 1 the intercepts of a promising 

variable based on the different constraints are found out. Using the intercept matrix obtained for all the promising 

variables, a maximum of m variables are selected and arranged where m is the number of constraints. Also the 

maximum value that each of the arranged variable can assume is found out. In step 2, the arranged variables are 

allowed to enter into the basis with an integer value which is less than the maximum value it can assume. Step 1 and 

2 are repeated till no variable could enter with integer value. In the proposed integer linear programming algorithm 

the improved solution moves in the interior of the feasible region. 
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I. INTRODUCTION 
 

A linear programming problem in which some or all of the 

variables in the optimal solution are restricted to assume 

non-negative integer values is called an integer 

programming problem [I.P.P] or integer linear 

programming. 

 

The general integer programming problem is given by 

Extremize  Z = CX 

Subject to 

                     

         AX         P0 

            

X  ≥ 0 and all variables are integers. 
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Let the columns corresponding to the matrix A be denoted 

by P1, P2, ….. Pn where 
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II. EXISTING METHODS 
 

Some of the existing algorithms to solve linear integer 

programming problems which are amenable to computer are 

 

1. Branch and Bound algorithms 

2. Zero-one implicit enumeration algorithms 

3. Cutting plane algorithms 

 

The branch and bound algorithm is linear programming 

based tree search. This is a way of systematically 

enumerating feasible solution such that optimal integer 

solution is found. 

 

There is an alternative to branch and bound called cutting 

planes which can also be used to solve integer programs. 

The fundamental idea behind cutting planes is to add 

constraints to a linear program until the optimal basic 

feasible solution takes on integer values. A special type of 

constraint called a cut is added to the problem. A cut relative 

to a current fractional solution satisfies the following 

criteria:  
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1. Every feasible integer solution is feasible for the 

cut, and  

2. The current fractional solution is not feasible for 

the cut.  

There are two ways to generate cuts. The first, called 

Gomory cuts, generates cuts from any linear programming 

tableau. This has the advantage of ``solving'' any problem 

but has the disadvantage that the method can be very slow. 

The second approach is to use the structure of the problem 

to generate very good cuts. The approach needs a problem-

by-problem analysis, but can provide very efficient solution 

techniques than Gomory cuts.  

This kind of univariate search approach increases 

the number of iterations and computational effort. This leads 

to device methods to reduce the computational effort and 

time in converging the optimum solutions. 

 

III.PROPOSED ALGORITHM 
 

In this paper a new algorithm to solve integer linear 

programming problems is given. This algorithm consists of 

two Phases. 

 

The step by step procedures of the proposed algorithms are 

as given below. 

Step 1: Order the promising variables as given in Phase I. 

Step 2: In this any variable in the set J, if yes step 2 else 

step 3 allows the arranged variables to enter in the basis. Go 

to step 1. 

Step 3: Report the result and stop. 

 

a) Phase I - Ordering of Promising Variables 

 

Step 1: The matrix of intercepts of the decision variables 

along the respective axes called “ ” matrix with respect to 

the chosen basis is to be constructed.  A typical intercept for 

the j
th

 variable, xj due to the i
th

 the resource, bi is    
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The expanded form of  matrix is :  
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Each row of the  matrix represents the m  number 

of intercepts of the decision variables along their respective 

axes and the each column represents the intercepts formed 

by the decision variables of each of the m constraints.  

Step 2:  Scan each row of  matrix and find the minimum 

intercept and its position. Multiply the minimum intercepts 

with the corresponding contribution coefficient (cj) value.  

 

Step 3:  Find the variable whose cjxj  value is the largest. Let 

it be xR. Then xR is selected as the promising variable. If 

more than one largest cjxj value occurs, consider the variable 

that has maximum contribution coefficient including the 

fractional value is selected as promising variable.  Delete the 

xR
th

 row as well as the other rows whose minimum occurs in 

the position at which the minimum for xR occurs. If more 

than one minimum occurs consider the variable that has 

minimum coefficient value including the fractional part. R is 

stored as the k
th

 element in set J, increment k by 1. 

Step 4: Repeat step 3 till all the rows or all the columns are 

deleted. 

Step 5:  The set of variables collected in step 3 are the 

ordered promising variables. 

 

 
 valuexc oforder  descending in the
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b) Phase II - Arranged variables are allowed to 

enter into the basis 
 

Step 1:  The first variable xj in the set is allowed to enter the 

basis with actual value if xj =1 else xj= αxj value. 
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Where αxj is an integer 0≤α≤1. 

Step 2: If R< k then Let t be the subscript of the (R+1)
th

 

element is in set J and xt be the corresponding variable else 

go to step 6. 

 

Step 3: For the variable xt  

Step 4:  
 

 

 

Step 5:  
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Step 6:  Repeat Phase I and II until P0new≤0 

 

3.3 Numerical example 
 

A numerical examples have been solved to illustrate the above method. 
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IV. LIMITATION 

 

This algorithm has been tested with less than or 

equal to constraints and assumed the α value as 0.5.[9] 

Further the research is going on with mixed constraints. 

 

V. CONCLUSION 

 

 In this paper an algorithm to solve integer linear 

programming problem is presented. This algorithm consists 

of two phases. A maximum of m promising variables are 

selected and arranged where m is the number of constraints. 

In phase two the arranged variables are allowed to enter into 

the basis with an integer value which is less than the 

maximum value it can assume. In the exiting method while 

finding the improved basic feasible solution it moves along 

the edge of the feasible region. In the proposed integer linear 

programming algorithm the improved solution moves in the 

interior of the feasible region. In the proposed method each 

time the variable is allowed to enter at αxj value where α is 

less than 1. It has been assumed that α will take a value 0.5 

and this assumption has to lead the optimum solution. But 

this has been proved further research is on to find out the 

optimum value of α for the fast convergence to the optimum 

solution. 
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