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Abstract:  In modern day’s concurrency computing systems are discussed in two-fold areas, first, distributed system; 

concurrency is caused by the fact that the individual components are active. They evolve independently, and sometimes 

they communicate with each other in order to synchronize or to exchange data. Second, View all object-oriented 

systems as inherently concurrent, since objects themselves are “naturally concurrent” entities. In reality, concurrency 

adds a new dimension to system structure and design. Concurrent systems are extremely difficult to understand, design, 

analyze and modify. Transaction processing, concurrency control and recovery issues have played a major role in 

conventional databases, and hence have been an important area of research for many decades. However, with the 

increasing use of advanced database applications such as CAD/CAM, large software design projects, object-oriented 

databases both in centralized and distributed environments, there is a vital need for better algorithms for handling the 

new applications more efficiently. In this paper, we present a study on the concurrency control and transaction controls. 

We have discussed the work process in the area of transaction modeling, its applications in object-oriented and 

databases. 
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I.INTRODUCTION  

In recent programming present features that allow a 

programmer to put across concurrency in an application by 

using active objects, i.e. objects with their own thread of 

control, and distribution. Concurrent systems can be classified 

into cooperative systems, where individual components 

collaborate, share results and work for a common goal, and 

competitive systems, where the individual components are not 

aware of each other and compete for shared resources. 

Programming languages address collaboration and 

competition by providing means for communication and 

synchronization among active objects [1]. The realization of 

complex object-oriented systems often needs sophisticated and 

elaborate concurrency features which may go beyond the 

traditional concurrency control associated with separate 

method calls. A transaction groups together a sequence of 

actions, and can therefore encapsulate complex behavior and 

embrace groups of objects and method calls. Transactions 

structure the dynamic system execution as opposed to the 

static structuring based on objects. Because of the ACID 

properties, transactions are able to hide the effects of 

concurrency and at the same time act as firewalls for errors, 

making them appropriate building blocks for structuring 

reliable distributed systems.  

 

This paper discussed transaction models are reviewed and 

their suitability for concurrent programming languages. The 

analysis of existing models of multithreaded transactions 

shows that they either give too much freedom to threads and 

do not control their participation in transactions, or 

unnecessarily restrict the computational model by assuming 

that only one thread can enter a transaction. Hence, a 

significant part of this thesis is devoted to the establishment of 

a new transaction model named Open Multithreaded 

Transactions, providing features for controlling and 

structuring not only accesses to objects, as usual in transaction 

systems, but also threads taking part in transactions. The 

model allows several threads to enter the same transaction in 

order to perform a joint activity. It provides a flexible way of 

manipulating threads executing inside a transaction by 

allowing them to be forked and terminated, but it restricts their 

behavior in order to guarantee correctness of transaction 

nesting and isolation among transactions. The open 

multithreaded transaction model incorporates disciplined 

exception handling adapted to nested transactions. It allows 
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individual threads to perform forward error recovery by 

handling an abnormal situation locally, and promotes a 

defensive approach for developing transactional objects, so 

that errors are detected early and dealt with inside the 

transaction. If local handling fails, the transaction support 

applies backward error recovery and reverses the system to its 

―initial‖ state [1]. 

 

II. TRANSACTION MODELS: 

 

Transactions [28] are a classic software structure for managing 

concurrent accesses to global data and for maintaining data 

consistency in the presence of failures. The notion of 

transaction has first been introduced in database systems in 

order to correctly handle concurrent updates of data and to 

provide fault tolerance with respect to hardware failures [2]. A 

transaction groups an arbitrary number of operations on data 

objects (from now on called transactional objects) together, 

making the whole appear indivisible as far as the application is 

concerned and with respect to other concurrent transactions. 

By using transactions, updates involving multiple transactional 

objects can be executed as if they happened in a sequential 

world. Complex systems often need more elaborate 

concurrency features than the ones offered by concurrent 

object-oriented programming languages. The existing single 

method approaches do not scale well, since they deal with 

each single operation separately [3]. There is a need for 

structuring units that encapsulate complex behavior and 

embrace groups of objects and method calls. These units 

should represent dynamic system execution as opposed to the 

static declaration of objects inside objects. System 

understanding, verification and modification are facilitated if 

program execution is recursively structured using such units. 

Examples of applications which require such structuring units 

are banking systems and e-commerce systems in general, 

computer supported cooperative work systems (CSCW 

systems), complex workflow systems, computer assisted 

design systems (CAD systems), control of modern production 

lines and cells, etc.  

 

Another concern which makes it necessary to extend the 

single-object view of system structuring is provision of fault 

tolerance: in many situations one cannot guarantee that 

erroneous state is confined inside an object. In that case, the 

application programmer has to deal with very complex error 

containment domains consisting of several interconnected 

objects. An error in a server can for example affect several 

client objects. In order to continue program execution, it is not 

sufficient to recover only the server or a client. Correct error 

recovery must recover the system as a whole[4]. 

 

The transaction scheme relies on three standard operations: 

begin, commit and abort, which mark the boundaries of a 

transaction. After beginning a new transaction, all update 

operations on transactional objects are done on behalf of that 

transaction. At any time during the execution of the 

transaction it can abort, which means that the state of the 

system is restored to the state at the beginning of the 

transaction (also called roll back). Once a transaction has 

completed successfully (is committed), the effects become 

permanent and visible to the outside. This approach focuses on 

preserving and guaranteeing important properties of the data 

objects (sometimes called resources) accessed during a 

transaction. These properties are referred to as the ACID 

properties: Atomicity, Consistency, Isolation and Durability 

[4,5,6,7]. 

 

Atomicity 

From the perspective of the caller of a transaction, the 

execution of the transaction appears to jump from the initial 

state to the result state, without any observable intermediate 

state —or, if the transaction cannot be completed for some 

reason, it appears as though it had never left the initial state. 

Atomicity is a general, unconditional property of transactions. 

It holds whether the transaction, the entire application, the 

operating system, or any other components function normally, 

function abnormally, or crash. For a transaction to be atomic, 

it must behave atomically to any outside observer. Under no 

circumstances may a transaction produce a result or a message 

that later disappears if the transaction rolls back. Atomicity is 

a vital property for proper system structuring and providing 

fault tolerance. 

 

Consistency 

A transaction produces consistent results only; otherwise it 

aborts. A result is consistent if the new state of the application 

fulfills all the validity constraints of the application according 

to the applications specification1. Unfortunately, this 

requirement is very hard or even impossible to verify. The 

state of an application tends to be very complex, and the 

number of possible consistency constraints among data items 

is huge. In order to still guarantee consistency, current 

transaction systems rely on the application programmer to 

only commit a transaction if the application state has been 

updated in a consistent way. A transaction must be written to 

preserve consistency. That is, each transaction expects a 

consistent state when it starts, and recreates that consistency 

after making its modifications, provided it runs to completion. 

Note that the intermediate states produced by a transaction 

during execution of its individual operations need not 
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necessarily be consistent. The transaction system guarantees 

only that the execution of a transaction will not erroneously 

corrupt the application state. 

 

Isolation 

Multiple transactions may execute concurrently. The isolation 

property states that transactions that execute concurrently do 

not affect each other, and that the recovery of any of them is 

separated from the execution of the others. Therefore 

concurrent transactions produce the same results as if they had 

been executed sequentially in some order. This does not mean 

that transactions cannot share objects. It only implies that all 

modifications that a transaction has made to transactional 

objects during its execution cannot be based on data computed 

by a yet-to-be-committed transaction. 

 

Durability 

Durability requires that the results of a transaction having 

completed successfully remain available in the future. The 

system, once it has acknowledged the execution of a 

transaction, must be able to reestablish its results after any 

type of subsequent failure. It also implies that there is no 

automatic function for revoking a completed transaction. The 

only way to get rid of what a completed transaction had done 

is to execute another transaction with a counter algorithm. 

 

III. CONCURRENCY CONTROL 

Participants of an open multithreaded transaction collaborate 

loosely by accessing the same transactional objects. They are 

allowed to communicate directly, but this form of 

communication and synchronization is not supported by the 

model. Hence, concurrency control in open multithreaded 

transactions concentrates on the synchronization of accesses to 

transactional objects by participants: Dealing with cooperative 

concurrency means ensuring data consistency despite 

concurrent accesses to transactional objects made by 

participants of the same transaction. Handling competitive 

concurrency comes down to guaranteeing the isolation 

property for each transaction. Transactions running 

concurrently are not allowed to interfere with each other; 

participants of a transaction access transactional objects as if 

they were the only threads executing in the system. The 

isolation property guarantees that the abort of a transaction 

does not cause other transactions to abort. Cascading aborts 

are prevented[8,9,10]. 

 

Pessimistic Concurrency Control 

The principle underlying pessimistic concurrency 

control schemes is that, before attempting to perform an 

operation on any transactional object, a transaction has to get 

permission to do so. Typically, a concurrency control manager 

is associated with each transactional object. Before allowing a 

transaction to execute an operation on the object, the 

concurrency manager checks if the transaction performing that 

particular operation would create a conflict with any other 

uncommitted operation executed on the object on behalf of 

other transactions If a transaction invokes an operation that 

causes a conflict, the transaction is blocked or aborted. The 

duration of blocking and the number of times blocking or 

aborting occurs can be reduced by exploiting operation and 

object semantics. 

 

Optimistic Concurrency Control 

In optimistic concurrency control schemes [11], 

transactions are allowed to perform conflicting operations on 

objects without being blocked, but when they attempt to 

commit, the transactions are validated to ensure that they 

preserve serializability. If a transaction is validated, it means 

that it has not executed operations that conflict with the 

operations of other concurrent transactions. It can then commit 

safely. A distinction can be made between optimistic 

concurrency control schemes based on forward validation or 

backward validation, depending on the manner in which 

conflicts are determined. 

Forward validation checks to ensure that a 

committing transaction does not conflict with any still active 

transaction and, consequently, that the committing 

transaction’s effects will not invalidate any active 

transaction’s results.    

Backward validation checks to ensure that a 

committing transaction has not been invalidated by the recent 

commit of another transaction.   

 

 

Figure 1.1: The Concurrency Control Hierarchy 
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4.1.4 Concurrency Control Information for Operations 

 

In order to correctly handle cooperative concurrency, the 

concurrency manager must be able to determine for each 

operation of a transactional object if it is an observer or a 

modifier. To deal with competitive concurrency, optimistic 

and pessimistic concurrency control schemes must be able to 

decide if there are conflicts between operations invoked by 

different transactions that would compromise the 

serializability of these transactions. This information must be 

associated with each operation of a transactional object. The 

following sections introduce strict concurrency control and 

semantic-based concurrency control for operations[12]. 

 

Strict Concurrency Control 

 

The simplest form of concurrency control among operations of 

a transactional object is strict concurrency control. In locking 

based concurrency control schemes this technique is also 

referred to as read / write locking.  

 

It is simple, for strict concurrency control only distinguishes 

observer and modifier operations. Reading a value from a data 

structure does not modify its contents, writing a value to the 

data structure does. In this case, cooperative and competitive 

concurrency control is based on the same criteria.The 

compatibility table of read and writes operations are shown in 

table 1.1. 

 

 

 

 

 

 

 

 

Table 1.1: Compatibility Table of Read and Write Operations 

 

Semantic-Based Concurrency Control 

 

Inter-transaction concurrency can be increased if one knows 

more about the semantics of the operations of a transactional 

object. Exploiting this knowledge can drastically increase the 

performance of an application that uses transactions. 

According to [13], the concurrency semantics of a 

transactional object depend on the following: 

• Semantics of the operations, 

• Operation input and output values, 

• Organization of the object, and 

• Object usage. 

  

Commutatively 

Let’s consider an abstract data type representing a 

set. A set is a non-ordered collection of elements without 

duplicates, meaning that for a given element there can only be 

one instance in the set at a given time. A set provides three 

operations, Insert (Set, Element) to insert an element into the 

set, Remove (Set, Element) to remove an element from a set, 

and Is In (Set, Element), an operation that tests if a certain 

element is part of a given set or not.  

 

 

 

Table 1.2: Backward Commutatively Table for the Set 

 

Depending on the update strategy used for transactional 

objects, two slightly different forms of commutatively must be 

provided. Backward commutatively is used in combination 

with immediate update of data objects. In this scheme, each 

operation is immediately executed on the transactional object, 

possibly modifying its state see in table 1.2. The ordering in 

which two operations A and B are executed on a transactional 

object is important in this case, since the operation executed 

second ―sees‖ the results of the execution of the first one. B 

commutes with A, if A followed by B has the same effects as 

executing A, then B and then undoing A, irrespective of the 

initial state of the transactional object. In particular, the return 

values of B must be the same in both cases.  

 

Forward commutatively is used in combination with deferred 

update of data objects. In this scheme, each operation on a 

transactional object is executed on a separate copy of the state 

of the object. The ordering of the operations A and B is not 

important in this case, since they both ―see‖ the same state of 

the object. B commutes with A, if B’s return values do not 

dependent on the modifications that A applies to the state of 

the transactional object [14,15].  

  

 Read(x) Write(x) 

Read(x) Yes  No 

Write(x) No  No 

 Insert (y) Remove(y) Is_In(y) 

Insert (x) X Not Equal 

to Y 
X Not 

Equal to Y 
X Not Equal 

to Y 
Remove(x) X Not Equal 

to Y 
X Not 

Equal to Y 
X Not Equal 

to Y 
Is_In(x) X Not Equal 

to Y 
X Not 

Equal to Y 
Yes  
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CONCLUSION 

In this paper discussed about cooperative and competitive 

concurrency, the classic single threaded transaction model 

must be extended. An ideal model must allow multiple threads 

to be associated with the same transaction context, and still 

enforce the ACID properties. An analysis of existing 

transaction models has shown that they either give too much 

freedom to threads and do not control their participation in 

transactions, or unnecessarily restrict the computational model 

by assuming that only one thread can enter a transaction. This 

paper also discussed various concurrency control models.  
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