
 International Journal of Contemporary Research in Computer Science and Technology (IJCRCST) e-ISSN: 2395-5325
Volume1, Issue 5 (August ’2015)

 IJCRCST © 2015 | All Rights Reserved www.ijcrcst.com
142

STUDY ON CONCURRENCY AND TRANSACTION CONTROLS

N.Poonguzhali,
M.Phil Research Scholar,

Department of Computer Science,
Siri PSG College of Arts and Science for Women,

Sankari, Tamilnadu, India.

K.Sumathi,
Assistant Professor,

Department of Computer Science,
Siri PSG College of Arts and Science for Women,

Sankari, Tamilnadu, India.

Abstract: In modern day’s concurrency computing systems are discussed in two-fold areas, first, distributed system;

concurrency is caused by the fact that the individual components are active. They evolve independently, and sometimes

they communicate with each other in order to synchronize or to exchange data. Second, View all object-oriented

systems as inherently concurrent, since objects themselves are “naturally concurrent” entities. In reality, concurrency

adds a new dimension to system structure and design. Concurrent systems are extremely difficult to understand, design,

analyze and modify. Transaction processing, concurrency control and recovery issues have played a major role in

conventional databases, and hence have been an important area of research for many decades. However, with the

increasing use of advanced database applications such as CAD/CAM, large software design projects, object-oriented

databases both in centralized and distributed environments, there is a vital need for better algorithms for handling the

new applications more efficiently. In this paper, we present a study on the concurrency control and transaction controls.

We have discussed the work process in the area of transaction modeling, its applications in object-oriented and

databases.

Keywords: Concurrency control, Transaction, Distributed System, Object-Oriented System

I.INTRODUCTION

In recent programming present features that allow a

programmer to put across concurrency in an application by

using active objects, i.e. objects with their own thread of

control, and distribution. Concurrent systems can be classified

into cooperative systems, where individual components

collaborate, share results and work for a common goal, and

competitive systems, where the individual components are not

aware of each other and compete for shared resources.

Programming languages address collaboration and

competition by providing means for communication and

synchronization among active objects [1]. The realization of

complex object-oriented systems often needs sophisticated and

elaborate concurrency features which may go beyond the

traditional concurrency control associated with separate

method calls. A transaction groups together a sequence of

actions, and can therefore encapsulate complex behavior and

embrace groups of objects and method calls. Transactions

structure the dynamic system execution as opposed to the

static structuring based on objects. Because of the ACID

properties, transactions are able to hide the effects of

concurrency and at the same time act as firewalls for errors,

making them appropriate building blocks for structuring

reliable distributed systems.

This paper discussed transaction models are reviewed and

their suitability for concurrent programming languages. The

analysis of existing models of multithreaded transactions

shows that they either give too much freedom to threads and

do not control their participation in transactions, or

unnecessarily restrict the computational model by assuming

that only one thread can enter a transaction. Hence, a

significant part of this thesis is devoted to the establishment of

a new transaction model named Open Multithreaded

Transactions, providing features for controlling and

structuring not only accesses to objects, as usual in transaction

systems, but also threads taking part in transactions. The

model allows several threads to enter the same transaction in

order to perform a joint activity. It provides a flexible way of

manipulating threads executing inside a transaction by

allowing them to be forked and terminated, but it restricts their

behavior in order to guarantee correctness of transaction

nesting and isolation among transactions. The open

multithreaded transaction model incorporates disciplined

exception handling adapted to nested transactions. It allows

 International Journal of Contemporary Research in Computer Science and Technology (IJCRCST) e-ISSN: 2395-5325
Volume1, Issue 5 (August ’2015)

 IJCRCST © 2015 | All Rights Reserved www.ijcrcst.com
143

individual threads to perform forward error recovery by

handling an abnormal situation locally, and promotes a

defensive approach for developing transactional objects, so

that errors are detected early and dealt with inside the

transaction. If local handling fails, the transaction support

applies backward error recovery and reverses the system to its

―initial‖ state [1].

II. TRANSACTION MODELS:

Transactions [28] are a classic software structure for managing

concurrent accesses to global data and for maintaining data

consistency in the presence of failures. The notion of

transaction has first been introduced in database systems in

order to correctly handle concurrent updates of data and to

provide fault tolerance with respect to hardware failures [2]. A

transaction groups an arbitrary number of operations on data

objects (from now on called transactional objects) together,

making the whole appear indivisible as far as the application is

concerned and with respect to other concurrent transactions.

By using transactions, updates involving multiple transactional

objects can be executed as if they happened in a sequential

world. Complex systems often need more elaborate

concurrency features than the ones offered by concurrent

object-oriented programming languages. The existing single

method approaches do not scale well, since they deal with

each single operation separately [3]. There is a need for

structuring units that encapsulate complex behavior and

embrace groups of objects and method calls. These units

should represent dynamic system execution as opposed to the

static declaration of objects inside objects. System

understanding, verification and modification are facilitated if

program execution is recursively structured using such units.

Examples of applications which require such structuring units

are banking systems and e-commerce systems in general,

computer supported cooperative work systems (CSCW

systems), complex workflow systems, computer assisted

design systems (CAD systems), control of modern production

lines and cells, etc.

Another concern which makes it necessary to extend the

single-object view of system structuring is provision of fault

tolerance: in many situations one cannot guarantee that

erroneous state is confined inside an object. In that case, the

application programmer has to deal with very complex error

containment domains consisting of several interconnected

objects. An error in a server can for example affect several

client objects. In order to continue program execution, it is not

sufficient to recover only the server or a client. Correct error

recovery must recover the system as a whole[4].

The transaction scheme relies on three standard operations:

begin, commit and abort, which mark the boundaries of a

transaction. After beginning a new transaction, all update

operations on transactional objects are done on behalf of that

transaction. At any time during the execution of the

transaction it can abort, which means that the state of the

system is restored to the state at the beginning of the

transaction (also called roll back). Once a transaction has

completed successfully (is committed), the effects become

permanent and visible to the outside. This approach focuses on

preserving and guaranteeing important properties of the data

objects (sometimes called resources) accessed during a

transaction. These properties are referred to as the ACID

properties: Atomicity, Consistency, Isolation and Durability

[4,5,6,7].

Atomicity

From the perspective of the caller of a transaction, the

execution of the transaction appears to jump from the initial

state to the result state, without any observable intermediate

state —or, if the transaction cannot be completed for some

reason, it appears as though it had never left the initial state.

Atomicity is a general, unconditional property of transactions.

It holds whether the transaction, the entire application, the

operating system, or any other components function normally,

function abnormally, or crash. For a transaction to be atomic,

it must behave atomically to any outside observer. Under no

circumstances may a transaction produce a result or a message

that later disappears if the transaction rolls back. Atomicity is

a vital property for proper system structuring and providing

fault tolerance.

Consistency

A transaction produces consistent results only; otherwise it

aborts. A result is consistent if the new state of the application

fulfills all the validity constraints of the application according

to the applications specification1. Unfortunately, this

requirement is very hard or even impossible to verify. The

state of an application tends to be very complex, and the

number of possible consistency constraints among data items

is huge. In order to still guarantee consistency, current

transaction systems rely on the application programmer to

only commit a transaction if the application state has been

updated in a consistent way. A transaction must be written to

preserve consistency. That is, each transaction expects a

consistent state when it starts, and recreates that consistency

after making its modifications, provided it runs to completion.

Note that the intermediate states produced by a transaction

during execution of its individual operations need not

 International Journal of Contemporary Research in Computer Science and Technology (IJCRCST) e-ISSN: 2395-5325
Volume1, Issue 5 (August ’2015)

 IJCRCST © 2015 | All Rights Reserved www.ijcrcst.com
144

necessarily be consistent. The transaction system guarantees

only that the execution of a transaction will not erroneously

corrupt the application state.

Isolation

Multiple transactions may execute concurrently. The isolation

property states that transactions that execute concurrently do

not affect each other, and that the recovery of any of them is

separated from the execution of the others. Therefore

concurrent transactions produce the same results as if they had

been executed sequentially in some order. This does not mean

that transactions cannot share objects. It only implies that all

modifications that a transaction has made to transactional

objects during its execution cannot be based on data computed

by a yet-to-be-committed transaction.

Durability

Durability requires that the results of a transaction having

completed successfully remain available in the future. The

system, once it has acknowledged the execution of a

transaction, must be able to reestablish its results after any

type of subsequent failure. It also implies that there is no

automatic function for revoking a completed transaction. The

only way to get rid of what a completed transaction had done

is to execute another transaction with a counter algorithm.

III. CONCURRENCY CONTROL

Participants of an open multithreaded transaction collaborate

loosely by accessing the same transactional objects. They are

allowed to communicate directly, but this form of

communication and synchronization is not supported by the

model. Hence, concurrency control in open multithreaded

transactions concentrates on the synchronization of accesses to

transactional objects by participants: Dealing with cooperative

concurrency means ensuring data consistency despite

concurrent accesses to transactional objects made by

participants of the same transaction. Handling competitive

concurrency comes down to guaranteeing the isolation

property for each transaction. Transactions running

concurrently are not allowed to interfere with each other;

participants of a transaction access transactional objects as if

they were the only threads executing in the system. The

isolation property guarantees that the abort of a transaction

does not cause other transactions to abort. Cascading aborts

are prevented[8,9,10].

Pessimistic Concurrency Control

The principle underlying pessimistic concurrency

control schemes is that, before attempting to perform an

operation on any transactional object, a transaction has to get

permission to do so. Typically, a concurrency control manager

is associated with each transactional object. Before allowing a

transaction to execute an operation on the object, the

concurrency manager checks if the transaction performing that

particular operation would create a conflict with any other

uncommitted operation executed on the object on behalf of

other transactions If a transaction invokes an operation that

causes a conflict, the transaction is blocked or aborted. The

duration of blocking and the number of times blocking or

aborting occurs can be reduced by exploiting operation and

object semantics.

Optimistic Concurrency Control

In optimistic concurrency control schemes [11],

transactions are allowed to perform conflicting operations on

objects without being blocked, but when they attempt to

commit, the transactions are validated to ensure that they

preserve serializability. If a transaction is validated, it means

that it has not executed operations that conflict with the

operations of other concurrent transactions. It can then commit

safely. A distinction can be made between optimistic

concurrency control schemes based on forward validation or

backward validation, depending on the manner in which

conflicts are determined.

Forward validation checks to ensure that a

committing transaction does not conflict with any still active

transaction and, consequently, that the committing

transaction’s effects will not invalidate any active

transaction’s results.

Backward validation checks to ensure that a

committing transaction has not been invalidated by the recent

commit of another transaction.

Figure 1.1: The Concurrency Control Hierarchy

 International Journal of Contemporary Research in Computer Science and Technology (IJCRCST) e-ISSN: 2395-5325
Volume1, Issue 5 (August ’2015)

 IJCRCST © 2015 | All Rights Reserved www.ijcrcst.com
145

4.1.4 Concurrency Control Information for Operations

In order to correctly handle cooperative concurrency, the

concurrency manager must be able to determine for each

operation of a transactional object if it is an observer or a

modifier. To deal with competitive concurrency, optimistic

and pessimistic concurrency control schemes must be able to

decide if there are conflicts between operations invoked by

different transactions that would compromise the

serializability of these transactions. This information must be

associated with each operation of a transactional object. The

following sections introduce strict concurrency control and

semantic-based concurrency control for operations[12].

Strict Concurrency Control

The simplest form of concurrency control among operations of

a transactional object is strict concurrency control. In locking

based concurrency control schemes this technique is also

referred to as read / write locking.

It is simple, for strict concurrency control only distinguishes

observer and modifier operations. Reading a value from a data

structure does not modify its contents, writing a value to the

data structure does. In this case, cooperative and competitive

concurrency control is based on the same criteria.The

compatibility table of read and writes operations are shown in

table 1.1.

Table 1.1: Compatibility Table of Read and Write Operations

Semantic-Based Concurrency Control

Inter-transaction concurrency can be increased if one knows

more about the semantics of the operations of a transactional

object. Exploiting this knowledge can drastically increase the

performance of an application that uses transactions.

According to [13], the concurrency semantics of a

transactional object depend on the following:

• Semantics of the operations,

• Operation input and output values,

• Organization of the object, and

• Object usage.

Commutatively

Let’s consider an abstract data type representing a

set. A set is a non-ordered collection of elements without

duplicates, meaning that for a given element there can only be

one instance in the set at a given time. A set provides three

operations, Insert (Set, Element) to insert an element into the

set, Remove (Set, Element) to remove an element from a set,

and Is In (Set, Element), an operation that tests if a certain

element is part of a given set or not.

Table 1.2: Backward Commutatively Table for the Set

Depending on the update strategy used for transactional

objects, two slightly different forms of commutatively must be

provided. Backward commutatively is used in combination

with immediate update of data objects. In this scheme, each

operation is immediately executed on the transactional object,

possibly modifying its state see in table 1.2. The ordering in

which two operations A and B are executed on a transactional

object is important in this case, since the operation executed

second ―sees‖ the results of the execution of the first one. B

commutes with A, if A followed by B has the same effects as

executing A, then B and then undoing A, irrespective of the

initial state of the transactional object. In particular, the return

values of B must be the same in both cases.

Forward commutatively is used in combination with deferred

update of data objects. In this scheme, each operation on a

transactional object is executed on a separate copy of the state

of the object. The ordering of the operations A and B is not

important in this case, since they both ―see‖ the same state of

the object. B commutes with A, if B’s return values do not

dependent on the modifications that A applies to the state of

the transactional object [14,15].

 Read(x) Write(x)

Read(x) Yes No

Write(x) No No

 Insert (y) Remove(y) Is_In(y)

Insert (x) X Not Equal

to Y
X Not

Equal to Y
X Not Equal

to Y
Remove(x) X Not Equal

to Y
X Not

Equal to Y
X Not Equal

to Y
Is_In(x) X Not Equal

to Y
X Not

Equal to Y
Yes

 International Journal of Contemporary Research in Computer Science and Technology (IJCRCST) e-ISSN: 2395-5325
Volume1, Issue 5 (August ’2015)

 IJCRCST © 2015 | All Rights Reserved www.ijcrcst.com
146

CONCLUSION

In this paper discussed about cooperative and competitive

concurrency, the classic single threaded transaction model

must be extended. An ideal model must allow multiple threads

to be associated with the same transaction context, and still

enforce the ACID properties. An analysis of existing

transaction models has shown that they either give too much

freedom to threads and do not control their participation in

transactions, or unnecessarily restrict the computational model

by assuming that only one thread can enter a transaction. This

paper also discussed various concurrency control models.

REFERENCES

[1] ―Open Multithreaded Transactions A Transaction Model

for Concurrent Object-Oriented Programming‖ in proceeding

of the Graduate Software Engineer ETH Born in Hofstetten-

Flüh (SO) Lausanne, EPFL April 2001

[2] Badal, D. Z.: ―Correctness of Concurrency Control and

Implications for Distributed Databases‖, in Proceedings of the

IEEE International Computer Software and Application

Conference – COMPSAC 79, Chicago, USA, November 1979.

[3] Bernstein, P. A.; Goodman, N.: ―Concurrency Control in

Distributed Database Systems‖, ACM Computing Surveys

13(2), June 1981, pp. 185 – 221.

[4] Briot, J.-P.; Guerraoui, R.; Lohr, K.-P.: ―Concurrency and

Distribution in Object-Oriented Programming‖, ACM

Computing Surveys 30(3), September 1998, pp. 291 – 329.

[5] Bernstein, P. A.; Hadzilacos, V.; Goodman, N.:

Concurrency Control and Recovery in Database Systems.

Addison-Wesley, 1987.

[6] Birrell, A. D.; Nelson, B. J.: ―Implementing Remote

Procedure Calls‖, ACM Transactions on Computer Systems

2(1), 1984, pp. 39 – 59.

[7] Chrysanthis, P. K.; Ramamritham, K.: ―ACTA. A

Framework for Specifying and Reasoning about Transaction

Structure and Behavior‖, SIGMOD Record (ACM Special

Interest Group on Management of Data) 19(2), June 1990, pp.

194 – 203.

[8] Cristian, F.: ―Understanding Fault–Tolerant Distributed

Systems‖, Communications of the ACM 34(2), February

1991, pp. 56 – 78.

[9] Daynès, L.: ―Extensible Transaction Management in

PJava‖, in Proceedings of the First International Workshop on

Persistence and Java, University of Glasgow, UK, September

1996.

[10] Menascé, D. A.; Nakanishi, T.: ―Optimistic Versus

Pessimistic Concurrency Control Mechanisms in Database

Management Systems‖, Information Systems 7(1), 1982, pp.

13 – 27.

[11] Papadimitriou, C. H.; Kanellakis, P. C.: ―On Concurrency

Control by Multiple Versions‖, ACM Transactions on

Database Systems 9(1), March 1984, pp. 89 – 99.

[12] Spector, A. Z.; Pausch, R. F.; Bruell, G.: ―Camelot: A

Flexible, Distributed Transaction Processing System‖, in

Proceedings of the 33rd IEEE Computer Society International

Conference (Spring COMPCON 88), pp. 432 – 437, San

Francisco CA, USA, March 1988, IEEE Computer Society

Press.

[13] Elmagarmid, A. K. (Ed.): Database Transaction Models

for Advanced Applications. Morgan Kaufmann, 1993.

[14] Eppinger, J. L.; Mummert, L. B.; Spector, A. Z.: Camelot

and Avalon – A Distributed Transaction Facility. Morgan

Kaufmann Publishers, San Mateo, CA, 1991.

[15] Kung, H. T.; Robinson, J. T.: ―On Optimistic Methods for

Concurrency Control‖, ACM Transactions on Database

Systems 6(2), June 1981, pp. 213 – 226.

