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Abstract: Time synchronization plays a critical role in distributed network systems. In this paper, we investigate the time 

synchronization problem in the context of underwater sensor networks (UWSNs). Although many time-synchronization 

protocols have been proposed for terrestrial wireless sensor networks, none of them can be directly applied to UWSNs. 

This is because most of these protocols do not consider long propagation delays and sensor node mobility, which are 

important attributes in UWSNs. In addition, UWSNs usually have high requirements in energy efficiency. To solve these 

new challenges, innovative time synchronization solutions are demanded. In this paper, we propose a pair wise, cross-

layer, time-synchronization scheme for mobile underwater sensor networks, called DA-Sync. The scheme proposes a 

framework to estimate the Doppler shift caused by mobility, more precisely through accounting the impact of the skew. 

To refine the relative velocity estimation, and consequently to enhance the synchronization accuracy, the Kalman filter is 

employed. Further, the clock skew and offset are calibrated by two runs of linear regression. Simulation results show 

that DA-Sync outperforms the existing synchronization schemes in both accuracy and energy efficiency. 
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I. INTRODUCTION 

Time synchronization in all networks either wired or wireless 

is important. It allows for successful communication between 

nodes on the network. It is, however, particularly vital for 

wireless networks. Synchronization in wireless nodes allows 

for a TDMA algorithm to be utilized over a multi-hop wireless 

network. Wireless time synchronization is used for many 

different purposes including location, proximity, energy 

efficiency, and mobility to name a few. In sensor networks 

when the nodes are deployed, their exact location is not known 

so time synchronization is used to determine their location. 

Also time stamped messages will be transmitted among the 

nodes in order to determine their relative proximity to one 

another. Time synchronization is used to save energy; it will 

allow the nodes to sleep for a given time and then awaken 

periodically to receive a beacon signal. Many wireless nodes 

are battery powered, so energy efficient protocols are 

necessary. Lastly, having common timing between nodes will 

allow for the determination of the speed of a moving node[1]. 

The need for synchronization is apparent. Besides its many 

uses like determining location, proximity, or speed, it is also 

needed because hardware clocks are not perfect. There are 

variations in oscillators, which the clocks may drift and 

durations of time intervals of events will not be observed the 

same between nodes. The concept of time and time 

synchronization is needed, especially in wireless networks. 

The definition of time synchronization does not necessarily 

mean that all clocks are perfectly matched across the network. 

This would be the strictest form of synchronization as well as 

the most difficult to implement. Precise clock synchronization 

is not always essential, so protocols from lenient to strict are 

available to meet one's needs [2]. 

There are three basic types of synchronization methods for 

wireless networks. The first is relative timing and is the 

simplest. It relies on the ordering of messages and events. The 

basic idea is to be able to determine if event 1 occurred before 

event 2. Comparing the local clocks to determine the order is 

all that is needed. Clock synchronization is not important. The 

next method is relative timing in which the network clocks are 

independent of each other and the nodes keep track of drift 

and offset. Usually a node keeps information about its drift 

and offset in correspondence to neighbouring nodes. The 

nodes have the ability to synchronize their local time with 

another nodes local time at any instant. Most synchronization 

protocols use this method. The last method is global 

synchronization where there is a constant global timescale 

throughout the network. This is obviously the most complex 

and the toughest to implement. Very few synchronizing 
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algorithms use this method particularly because this type of 

synchronization usually is not necessary [3]. 

II. TIME SYNCHRONIZATION  

As the advances in technology have enabled the development 

of tiny, low power devices capable of performing sensing and 

communication tasks, sensor networks emerged and received 

high attention of many researchers. Sensor networks are a 

special type of ad-hoc networks, where wireless devices get 

together and spontaneously form a network without the need 

for any infrastructure. Because of the lack of infrastructure, 

such as routers in traditional networks, nodes in an ad-hoc 

network cooperate for communication, by forwarding each 

other’s packets for delivery from a source to its destination. 

This yields a multihop communication environment [2].  

Though being a special type of ad-hoc networks, sensor 

networks have their own characteristics, such as much limited 

energy sources, high density of node deployment, cheap and 

unreliable sensor nodes. Having these extra limiting factors for 

their operation, sensor networks are designed to perform 

complex tasks such as emergency applications, environment 

monitoring, information gathering in battle fields, and many 

other uses, connecting the physical world to the virtual world 

of computers. As in all distributed systems, time 

synchronization is an important component of a sensor 

network. Time synchronization in a computer network aims at 

providing a common time scale for local clocks of nodes in the 

network. Since all hardware clocks are imperfect, local clocks 

of nodes may drift away from each other in time, hence 

observed time or durations of time intervals may differ for 

each node in the network. However, for many applications or 

networking protocols, it is required that a common view of 

time exists and is available to all -or some- of the nodes in the 

network at any particular instant.  

Computing devices are mostly equipped with a hardware 

oscillator assisted computer clock, which implements an 

approximation C(t) of real-time t. The angular frequency of 

the hardware oscillator determines the rate at which the clock 

runs. The rate of a perfect clock, which can be denoted as dC 

dt , would equal 1, however all clocks are subject to a clock 

drift; oscillator frequency will vary unpredictably due to 

various physical effects. Even though the frequency of a clock 

changes over time, it can be approximated with good accuracy 

by an oscillator with fixed frequency .  

Then, for some node i in the network, we can 

approximate its local clock as:  

Ci(t) = ait + bi , (1)  

Where ai(t) is the clock drift, and bi(t) is the offset of 

node i’s clock.  

Drift denotes the rate (frequency) of the clock, and offset is 

the difference in value from real time t. Using equation (1), we 

can compare the local clocks of two nodes in a network, say 

node 1 and node 2 as: C1(t) = a12 · C2(t) + b12 (2) We call 

a12 the relative drift, and b12 the relative offset between the 

clocks of node 1 and node 2. If two clocks are perfectly 

synchronized, then their relative drift is 1 -meaning the clocks 

have the same rate- and their relative offset is zero -meaning 

they have the same value at that instant. Some studies in the 

literature use “skew” instead of “drift”, defining it as the 

difference between clock rates . Also, the “offset” may 

equivalently be mentioned as “phase offset”. The 

synchronization problem on a network of n devices 

corresponds to the problem of equalizing the computer clocks 

of different devices.  

The synchronization can be either global; trying to equalize 

Ci(t) for all i = 1..n, or it can be local; trying to equalize Ci(t) 

for some set of nodes -mostly the ones that are spatially close. 

Equalizing just the instantaneous values (correcting the 

offsets) of clocks is not enough for synchronization since the 

clocks will drift away afterwards. Therefore a synchronization 

scheme should either equalize the clock rates as well as 

offsets, or it should repeatedly correct the offsets to keep the 

clocks synchronized over a time period[5][6]. 

a). Synchronization Methods for Sensor 

Networks Time synchronization in sensor networks has 

attracted attention in last few years. Post-facto synchronization 

was a pioneering work by Elson and Estrin . They proposed 

that unlike in traditional synchronization schemes such as 

NTP, local clocks of the sensor nodes should normally run 

unsynchronized – in their own pace, but should synchronize 

whenever necessary. This way local timestamps of two nodes 

at the occurrence time of an event are synchronized later by 

extrapolating backwards to estimate the offset between clocks 

at a previous time (at the time of the event). This 

synchronization scheme has led afterwards to their RBS 

protocol, This work also presented a synchronization 

algorithm for ad hoc networks around the same time as , 

suggesting the timestamps in the messages to be transformed 

between nodes, instead of adjusting the clocks. However, his 

scheme used the traditional two-way message exchange for 

drift and offset estimation, with the assumption that the drifts 

are bounded by some constant p. This synchronization scheme 

achieves around 1ms precision with little overhead [4].  
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In, the authors report 2µs precision for synchronization, 

achieved by tight coupling between application and MAC 

layers in the protocol stack. The achievement in precision is 

basically due to the proposed architecture that enables time 

stamping messages at the instant the message is actually sent 

at the MAC layer, thereby eliminating uncertainties due to the 

sender. gives an overview of the time synchronization problem 

in sensor networks, defining the requirements, and various 

issues for designing synchronization algorithms for sensor 

networks. The authors argue that such an algorithm should be 

multi-modal, tiered and tunable, so that it can satisfy the 

diverse needs of various sensor network applications. 

Moreover, they suggest that the local clock of each node 

should be free-running, i.e. one should not adjust the local 

clocks. Instead, the synchronization scheme should build up a 

table of parameters that enables each node to convert its local 

clock to that of another node, and vice versa. In [10] a 

message ordering scheme for sensor networks is proposed. 

The intention is not to synchronize clocks but to be able to 

reason about the relative order between messages or events. 

The scheme 4 described in this work complies with the most 

relaxed version of synchronization and is not applicable for 

most synchronization needs in sensor networks. A recent 

interesting study has a more theoretical approach to the 

problem.  

In this work, the authors consider an infinitely large sensor 

network, and propose an approach in which nodes collaborate 

to generate a waveform that carries enough synchronization 

information to all nodes in the network. They argue that as the 

number of nodes goes to infinity, optimal synchronization is 

possible at reasonable complexity. In the rest of this section, 

we present in detail the synchronization methods explicitly 

designed and proposed for sensor networks[4]. 

b) Timing-Sync Protocol for Sensor Networks 

(TPSN)  

Ganeriwal et.al. proposed a network-wide time 

synchronization protocol for sensor networks, which they call 

Timing-Sync Protocol for Sensor Networks (TPSN). Their 

protocol works in two phases: “level discovery phase” and 

“synchronization phase”. The aim of the first phase is to create 

a hierarchical topology in the network, where each node is 

assigned a level. Only one node is assigned level 0, called the 

root node. In the second phase, a node of level i synchronizes 

to a node of level i−1. At the end of the synchronization phase, 

all nodes are synchronized to the root node and the network-

wide synchronization is achieved.  

 

c) Discovery Phase 

This phase is run once at the network deployment. First a node 

should be determined as the root node. This could be a sink 

node in the sensor network, and the sink may have a GPS 

receiver, in which case the algorithm will synchronize all 

nodes to an external time (time in physical world). If such a 

sink is not available, sensor nodes can periodically take over 

the functionality of the root node. An existing leader election 

algorithm might be used for this periodic root node election 

step. The root node is assigned level 0, and initiates the level 

discovery phase by broadcasting a level discovery packet. This 

packet contains the identity and level of the sender node. Upon 

receiving this packet, the neighbors of the root node assign 

themselves level 1. Then each level 1 node broadcasts a level 

discovery packet with its level and identity in the packet. Once 

a node is assigned a level, it discards further incoming level 

discovery packets. This broadcast chain goes on through the 

network, and the phase is completed when all nodes are 

assigned a level. 

d) Lightweight Tree-Based Synchronization (LTS)  

Lightweight Tree-based Synchronization (LTS), proposed by 

Greunen and Rabaey is distinguished from other work in the 

sense that the aim is not to maximize accuracy, but to 

minimize the complexity of the synchronization.  

Thus the needed synchronization accuracy is assumed to be 

given as a constraint, and the target is to devise a 

synchronization algorithm with minimal complexity to 

achieve given precision. This approach is supported by the 

claim of authors that the maximum time accuracy needed in 

sensor networks is relatively low (within fractions of a 

second), and therefore it is sufficient to use a relaxed, or 

lightweight, synchronization scheme in sensor networks. Two 

LTS algorithms are proposed for multihop synchronization of 

the network based on pair wise 8 synchronization scheme of , 

as also explained . Both algorithms require nodes to 

synchronize to some reference point(s) such as a sink node in 

the sensor network. The first algorithm is a centralized 

algorithm, and needs a spanning tree to be constructed first.  

Then pairwise synchronization is done along the n − 1 edges 

of the spanning tree. In the centralized algorithm, the reference 

node is the root of the spanning tree and has the responsibility 

of initiating a “resynchronization” as needed. Using the 

assumption that the clock drifts are bounded, and given the 

required precision, the reference node calculates the time 

period that a single synchronization step will be valid. Since 

the depth of the spanning tree affects the time to synchronize 

the whole network, and also the precision error at the leaf 
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nodes, the depth of the tree is communicated back to the root 

node so that it can use this information in its resynchronization 

time decision.  

The second multihop LTS algorithm performs network-wide 

synchronization in a distributed fashion. Each node decides 

the time for its own synchronization, and a spanning tree 

structure is not used in this algorithm. When a node i decides 

that it needs to synchronize (using the desired accuracy, its 

distance from the reference node, and the clock drift), it sends 

a synchronization request to the closest reference node (by any 

routing mechanism available). Then, all nodes along the path 

from that reference node to i must be synchronized before 

node i can be synchronized. The advantage of this scheme is 

that some nodes may have less frequent events to deliver and 

therefore may not need frequent synchronization. Since nodes 

have the opportunity to decide on their own synchronization, 

this saves unnecessary synchronization effort of such nodes. 

On the other hand, letting each node decide on 

resynchronization may boost the number of pairwise 

synchronizations, since for each synchronization request, all 

nodes along the path from reference node to the initiator of 

resynchronization need to be synchronized. As the number of 

synchronization requests increase, the overall effect of 

synchronizations along these paths may be a significant waste 

of resources.  

e) Data Collection 

 

In the beginning, an ordinary node initiates message 

exchanges by sending a “Sync-Req” message to a neighboring 

reference node. The ordinary node records the sending time 

stamp T1, obtained at the MAC layer, right before the 

message leaves. Upon receiving the Sync-Req message, the 

reference node estimates and records the ordinary node’s 

relative moving velocity v0 with Doppler shifts as specified in 

Section 3. Meanwhile, it marks its local time as t2. Then, after 

a time interval tr (waiting for the hardware sending receiving 

transition and avoiding collisions), the reference node sends 

back a “Sync-Res” message which contains t2, v0 and its 

sending time t3. When receiving the Sync-Res message, the 

ordinary node records its receiving time T4 and its relative 

moving velocity to the reference node, the message exchange 

process between the ordinary node and the reference node 

[6][7][8].  

 

III. PROBLEM STUDIED  

UWSNs facilitate or enable a wide range of aquatic 

applications, including coastal surveillance, environmental 

monitoring, undersea exploration, disaster prevention, and 

mine reconnaissance. However, due to the high attenuation of 

radio waves in water, UWSNs have to rely on acoustic 

communications . The unique characteristics of underwater 

acoustic communications and networking, such as low 

available bandwidth, long propagation delays, high error 

probability, and sensor node (passive or proactive) mobility 

(in mobile networks) pose grand challenges to almost every 

layer of network protocol stack and applications Most of them 

claim to be able to achieve high accuracy with reasonable 

energy expenditure. However, these algorithms cannot be 

directly applied to UWSNs. This is because most of these 

approaches assume negligible propagation delays among 

sensor nodes, which is not true in UWSNs. UWSNs often 

feature long propagation delays due to the low transmission 

speed of sound in water (about 1500 m/s).  

 

In addition, for mobile UWSNs, propagation delays between 

nodes are time-varying because of sensor node mobility. 

Furthermore, acoustic transmissions are power demanding, 

which requires high energy efficiency. All of these features in 

UWSNs bring new challenges for time synchronization 

algorithms. Recently, some time synchronization algorithms, 

such as TSHL, MU-Sync , Mobi-Sync , and D-Sync have been 

proposed for UWSNs. In these algorithms, the issue of long 

propagation delays is often well addressed. However, they all 

ignore one issue or another. For example, TSHL assumes that 

nodes are fixed, which makes it not suitable for mobile 

networks. While MU-Sync is designed for mobile underwater 

networks, it is not energy efficient, and Mobi-Sync is for 

dense network. 

 

a) Existing Method 

Existing time-synchronization schemes use half of the round 

trip time to calculate one way propagation delay. Due to the 

node mobility, propagation delays on the way forth and back 

are not necessarily identical, especially when nodes move at 

high speed. This issue severely decreases the accuracy of most 

time synchronization approaches. The technique used by many 

of these systems is collaborative filtering (CF), which analyzes 

past community opinions to find correlations of similar users 

and items to suggest k personalized items (e.g., movies) to a 

querying user u. Community opinions are expressed through 

explicit ratings represented by the triple (user, rating, item) 

that represents a user providing a numeric rating for an item. 

Myriad applications can produce location-based ratings that 

embed user and/or item locations. 

 Both accuracy and energy efficiency is less. 

 Long propagation delay. 

 The existing systems are ill-equipped to produce 

location aware recommendations. 
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 The existing system provides more expensive 

operations to maintain the user partitioning structure. 

 The existing system does not provide spatial ratings. 

 

b) Proposed Method 

 

A novel time-synchronization scheme, called DA-Sync, which 

is a fundamental cross-layer-designed time-synchronization 

protocol specific for mobile UWSNs. DA-Sync provides a 

fundamental method to synchronize two sensor nodes, i.e., an 

ordinary node and a reference node. The scheme proposes a 

framework to estimate the doppler shift caused by mobility, 

more precisely through accounting the impact of the skew.  

(a) A user partitioning technique that exploits user locations in 

a way that maximizes system scalability while not sacrificing 

recommendation locality 

(b) A travel penalty technique that exploits item locations and 

avoids exhaustively processing all spatial recommendation 

candidates. 

Advantages 

 Different algorithms have different sync message 

(including request and response messages) packet 

sizes since they need to carry different amounts of 

information.  

 High accuracy and high energy efficiency. 

 Reduce the nondeterministic errors that are 

commonly encountered by time synchronization 

algorithms which rely on message exchanges. 

CONCLUSION 

DA-Sync is the first time synchronization algorithm to utilize 

the spatial correlation characteristics of underwater objects, 

improving the synchronization accuracy as well as the energy 

efficiency. The simulation results show that this new approach 

achieves higher accuracy with a lower message overhead. 

Explore other underwater mobility patterns, including one that 

involves vertical movement to examine the suitability of our 

design. Investigate the influence of errors on super node 

localization as well as velocity estimation, and also the 

influence on MAC layer activities such as packet loss and 

retransmission. In this project, we presented DA-Sync, a novel 

time synchronization scheme for mobile UWSNs. DA-Sync is 

a fundamental cross-layer time-synchronization scheme, 

which leverages Doppler effects and employs the Kalman 

filter to improve the accuracy of propagation-delay estimation 

in time synchronization. Our simulation results showed that 

this new approach can achieve high accuracy with low 

message overhead [9][10]. 
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