
 International Journal of Contemporary Research in Computer Science and Technology (IJCRCST) e-ISSN: 2395-5325
Volume1, Issue 5 (August ’2015)

 IJCRCST © 2015 | All Rights Reserved www.ijcrcst.com
153

A STUDY ON DA-SYNC SCHEME FOR MOBILE UNDERWATER SENSOR NETWORKS

K.Premalatha,
M.Phil Scholar,

Department Of Computer Science,
Dr. R.A.N.M. Arts & Science College,

Erode, Tamilnadu, India.

M.Suriya,
Head and Assistant Professor,

Department Of Computer Applications,
Dr. R.A.N.M. Arts & Science College,

Erode, Tamilnadu, India.

Abstract: Time synchronization plays a critical role in distributed network systems. In this paper, we investigate the time

synchronization problem in the context of underwater sensor networks (UWSNs). Although many time-synchronization

protocols have been proposed for terrestrial wireless sensor networks, none of them can be directly applied to UWSNs.

This is because most of these protocols do not consider long propagation delays and sensor node mobility, which are

important attributes in UWSNs. In addition, UWSNs usually have high requirements in energy efficiency. To solve these

new challenges, innovative time synchronization solutions are demanded. In this paper, we propose a pair wise, cross-

layer, time-synchronization scheme for mobile underwater sensor networks, called DA-Sync. The scheme proposes a

framework to estimate the Doppler shift caused by mobility, more precisely through accounting the impact of the skew.

To refine the relative velocity estimation, and consequently to enhance the synchronization accuracy, the Kalman filter is

employed. Further, the clock skew and offset are calibrated by two runs of linear regression. Simulation results show

that DA-Sync outperforms the existing synchronization schemes in both accuracy and energy efficiency.

Keywords: Sensor networks, Time Synchronization, data fusion, energy efficiency

I. INTRODUCTION

Time synchronization in all networks either wired or wireless

is important. It allows for successful communication between

nodes on the network. It is, however, particularly vital for

wireless networks. Synchronization in wireless nodes allows

for a TDMA algorithm to be utilized over a multi-hop wireless

network. Wireless time synchronization is used for many

different purposes including location, proximity, energy

efficiency, and mobility to name a few. In sensor networks

when the nodes are deployed, their exact location is not known

so time synchronization is used to determine their location.

Also time stamped messages will be transmitted among the

nodes in order to determine their relative proximity to one

another. Time synchronization is used to save energy; it will

allow the nodes to sleep for a given time and then awaken

periodically to receive a beacon signal. Many wireless nodes

are battery powered, so energy efficient protocols are

necessary. Lastly, having common timing between nodes will

allow for the determination of the speed of a moving node[1].

The need for synchronization is apparent. Besides its many

uses like determining location, proximity, or speed, it is also

needed because hardware clocks are not perfect. There are

variations in oscillators, which the clocks may drift and

durations of time intervals of events will not be observed the

same between nodes. The concept of time and time

synchronization is needed, especially in wireless networks.

The definition of time synchronization does not necessarily

mean that all clocks are perfectly matched across the network.

This would be the strictest form of synchronization as well as

the most difficult to implement. Precise clock synchronization

is not always essential, so protocols from lenient to strict are

available to meet one's needs [2].

There are three basic types of synchronization methods for

wireless networks. The first is relative timing and is the

simplest. It relies on the ordering of messages and events. The

basic idea is to be able to determine if event 1 occurred before

event 2. Comparing the local clocks to determine the order is

all that is needed. Clock synchronization is not important. The

next method is relative timing in which the network clocks are

independent of each other and the nodes keep track of drift

and offset. Usually a node keeps information about its drift

and offset in correspondence to neighbouring nodes. The

nodes have the ability to synchronize their local time with

another nodes local time at any instant. Most synchronization

protocols use this method. The last method is global

synchronization where there is a constant global timescale

throughout the network. This is obviously the most complex

and the toughest to implement. Very few synchronizing

 International Journal of Contemporary Research in Computer Science and Technology (IJCRCST) e-ISSN: 2395-5325
Volume1, Issue 5 (August ’2015)

 IJCRCST © 2015 | All Rights Reserved www.ijcrcst.com
154

algorithms use this method particularly because this type of

synchronization usually is not necessary [3].

II. TIME SYNCHRONIZATION

As the advances in technology have enabled the development

of tiny, low power devices capable of performing sensing and

communication tasks, sensor networks emerged and received

high attention of many researchers. Sensor networks are a

special type of ad-hoc networks, where wireless devices get

together and spontaneously form a network without the need

for any infrastructure. Because of the lack of infrastructure,

such as routers in traditional networks, nodes in an ad-hoc

network cooperate for communication, by forwarding each

other’s packets for delivery from a source to its destination.

This yields a multihop communication environment [2].

Though being a special type of ad-hoc networks, sensor

networks have their own characteristics, such as much limited

energy sources, high density of node deployment, cheap and

unreliable sensor nodes. Having these extra limiting factors for

their operation, sensor networks are designed to perform

complex tasks such as emergency applications, environment

monitoring, information gathering in battle fields, and many

other uses, connecting the physical world to the virtual world

of computers. As in all distributed systems, time

synchronization is an important component of a sensor

network. Time synchronization in a computer network aims at

providing a common time scale for local clocks of nodes in the

network. Since all hardware clocks are imperfect, local clocks

of nodes may drift away from each other in time, hence

observed time or durations of time intervals may differ for

each node in the network. However, for many applications or

networking protocols, it is required that a common view of

time exists and is available to all -or some- of the nodes in the

network at any particular instant.

Computing devices are mostly equipped with a hardware

oscillator assisted computer clock, which implements an

approximation C(t) of real-time t. The angular frequency of

the hardware oscillator determines the rate at which the clock

runs. The rate of a perfect clock, which can be denoted as dC

dt , would equal 1, however all clocks are subject to a clock

drift; oscillator frequency will vary unpredictably due to

various physical effects. Even though the frequency of a clock

changes over time, it can be approximated with good accuracy

by an oscillator with fixed frequency .

Then, for some node i in the network, we can

approximate its local clock as:

Ci(t) = ait + bi , (1)

Where ai(t) is the clock drift, and bi(t) is the offset of

node i’s clock.

Drift denotes the rate (frequency) of the clock, and offset is

the difference in value from real time t. Using equation (1), we

can compare the local clocks of two nodes in a network, say

node 1 and node 2 as: C1(t) = a12 · C2(t) + b12 (2) We call

a12 the relative drift, and b12 the relative offset between the

clocks of node 1 and node 2. If two clocks are perfectly

synchronized, then their relative drift is 1 -meaning the clocks

have the same rate- and their relative offset is zero -meaning

they have the same value at that instant. Some studies in the

literature use “skew” instead of “drift”, defining it as the

difference between clock rates . Also, the “offset” may

equivalently be mentioned as “phase offset”. The

synchronization problem on a network of n devices

corresponds to the problem of equalizing the computer clocks

of different devices.

The synchronization can be either global; trying to equalize

Ci(t) for all i = 1..n, or it can be local; trying to equalize Ci(t)

for some set of nodes -mostly the ones that are spatially close.

Equalizing just the instantaneous values (correcting the

offsets) of clocks is not enough for synchronization since the

clocks will drift away afterwards. Therefore a synchronization

scheme should either equalize the clock rates as well as

offsets, or it should repeatedly correct the offsets to keep the

clocks synchronized over a time period[5][6].

a). Synchronization Methods for Sensor

Networks Time synchronization in sensor networks has

attracted attention in last few years. Post-facto synchronization

was a pioneering work by Elson and Estrin . They proposed

that unlike in traditional synchronization schemes such as

NTP, local clocks of the sensor nodes should normally run

unsynchronized – in their own pace, but should synchronize

whenever necessary. This way local timestamps of two nodes

at the occurrence time of an event are synchronized later by

extrapolating backwards to estimate the offset between clocks

at a previous time (at the time of the event). This

synchronization scheme has led afterwards to their RBS

protocol, This work also presented a synchronization

algorithm for ad hoc networks around the same time as ,

suggesting the timestamps in the messages to be transformed

between nodes, instead of adjusting the clocks. However, his

scheme used the traditional two-way message exchange for

drift and offset estimation, with the assumption that the drifts

are bounded by some constant p. This synchronization scheme

achieves around 1ms precision with little overhead [4].

 International Journal of Contemporary Research in Computer Science and Technology (IJCRCST) e-ISSN: 2395-5325
Volume1, Issue 5 (August ’2015)

 IJCRCST © 2015 | All Rights Reserved www.ijcrcst.com
155

In, the authors report 2µs precision for synchronization,

achieved by tight coupling between application and MAC

layers in the protocol stack. The achievement in precision is

basically due to the proposed architecture that enables time

stamping messages at the instant the message is actually sent

at the MAC layer, thereby eliminating uncertainties due to the

sender. gives an overview of the time synchronization problem

in sensor networks, defining the requirements, and various

issues for designing synchronization algorithms for sensor

networks. The authors argue that such an algorithm should be

multi-modal, tiered and tunable, so that it can satisfy the

diverse needs of various sensor network applications.

Moreover, they suggest that the local clock of each node

should be free-running, i.e. one should not adjust the local

clocks. Instead, the synchronization scheme should build up a

table of parameters that enables each node to convert its local

clock to that of another node, and vice versa. In [10] a

message ordering scheme for sensor networks is proposed.

The intention is not to synchronize clocks but to be able to

reason about the relative order between messages or events.

The scheme 4 described in this work complies with the most

relaxed version of synchronization and is not applicable for

most synchronization needs in sensor networks. A recent

interesting study has a more theoretical approach to the

problem.

In this work, the authors consider an infinitely large sensor

network, and propose an approach in which nodes collaborate

to generate a waveform that carries enough synchronization

information to all nodes in the network. They argue that as the

number of nodes goes to infinity, optimal synchronization is

possible at reasonable complexity. In the rest of this section,

we present in detail the synchronization methods explicitly

designed and proposed for sensor networks[4].

b) Timing-Sync Protocol for Sensor Networks

(TPSN)

Ganeriwal et.al. proposed a network-wide time

synchronization protocol for sensor networks, which they call

Timing-Sync Protocol for Sensor Networks (TPSN). Their

protocol works in two phases: “level discovery phase” and

“synchronization phase”. The aim of the first phase is to create

a hierarchical topology in the network, where each node is

assigned a level. Only one node is assigned level 0, called the

root node. In the second phase, a node of level i synchronizes

to a node of level i−1. At the end of the synchronization phase,

all nodes are synchronized to the root node and the network-

wide synchronization is achieved.

c) Discovery Phase

This phase is run once at the network deployment. First a node

should be determined as the root node. This could be a sink

node in the sensor network, and the sink may have a GPS

receiver, in which case the algorithm will synchronize all

nodes to an external time (time in physical world). If such a

sink is not available, sensor nodes can periodically take over

the functionality of the root node. An existing leader election

algorithm might be used for this periodic root node election

step. The root node is assigned level 0, and initiates the level

discovery phase by broadcasting a level discovery packet. This

packet contains the identity and level of the sender node. Upon

receiving this packet, the neighbors of the root node assign

themselves level 1. Then each level 1 node broadcasts a level

discovery packet with its level and identity in the packet. Once

a node is assigned a level, it discards further incoming level

discovery packets. This broadcast chain goes on through the

network, and the phase is completed when all nodes are

assigned a level.

d) Lightweight Tree-Based Synchronization (LTS)

Lightweight Tree-based Synchronization (LTS), proposed by

Greunen and Rabaey is distinguished from other work in the

sense that the aim is not to maximize accuracy, but to

minimize the complexity of the synchronization.

Thus the needed synchronization accuracy is assumed to be

given as a constraint, and the target is to devise a

synchronization algorithm with minimal complexity to

achieve given precision. This approach is supported by the

claim of authors that the maximum time accuracy needed in

sensor networks is relatively low (within fractions of a

second), and therefore it is sufficient to use a relaxed, or

lightweight, synchronization scheme in sensor networks. Two

LTS algorithms are proposed for multihop synchronization of

the network based on pair wise 8 synchronization scheme of ,

as also explained . Both algorithms require nodes to

synchronize to some reference point(s) such as a sink node in

the sensor network. The first algorithm is a centralized

algorithm, and needs a spanning tree to be constructed first.

Then pairwise synchronization is done along the n − 1 edges

of the spanning tree. In the centralized algorithm, the reference

node is the root of the spanning tree and has the responsibility

of initiating a “resynchronization” as needed. Using the

assumption that the clock drifts are bounded, and given the

required precision, the reference node calculates the time

period that a single synchronization step will be valid. Since

the depth of the spanning tree affects the time to synchronize

the whole network, and also the precision error at the leaf

 International Journal of Contemporary Research in Computer Science and Technology (IJCRCST) e-ISSN: 2395-5325
Volume1, Issue 5 (August ’2015)

 IJCRCST © 2015 | All Rights Reserved www.ijcrcst.com
156

nodes, the depth of the tree is communicated back to the root

node so that it can use this information in its resynchronization

time decision.

The second multihop LTS algorithm performs network-wide

synchronization in a distributed fashion. Each node decides

the time for its own synchronization, and a spanning tree

structure is not used in this algorithm. When a node i decides

that it needs to synchronize (using the desired accuracy, its

distance from the reference node, and the clock drift), it sends

a synchronization request to the closest reference node (by any

routing mechanism available). Then, all nodes along the path

from that reference node to i must be synchronized before

node i can be synchronized. The advantage of this scheme is

that some nodes may have less frequent events to deliver and

therefore may not need frequent synchronization. Since nodes

have the opportunity to decide on their own synchronization,

this saves unnecessary synchronization effort of such nodes.

On the other hand, letting each node decide on

resynchronization may boost the number of pairwise

synchronizations, since for each synchronization request, all

nodes along the path from reference node to the initiator of

resynchronization need to be synchronized. As the number of

synchronization requests increase, the overall effect of

synchronizations along these paths may be a significant waste

of resources.

e) Data Collection

In the beginning, an ordinary node initiates message

exchanges by sending a “Sync-Req” message to a neighboring

reference node. The ordinary node records the sending time

stamp T1, obtained at the MAC layer, right before the

message leaves. Upon receiving the Sync-Req message, the

reference node estimates and records the ordinary node’s

relative moving velocity v0 with Doppler shifts as specified in

Section 3. Meanwhile, it marks its local time as t2. Then, after

a time interval tr (waiting for the hardware sending receiving

transition and avoiding collisions), the reference node sends

back a “Sync-Res” message which contains t2, v0 and its

sending time t3. When receiving the Sync-Res message, the

ordinary node records its receiving time T4 and its relative

moving velocity to the reference node, the message exchange

process between the ordinary node and the reference node

[6][7][8].

III. PROBLEM STUDIED

UWSNs facilitate or enable a wide range of aquatic

applications, including coastal surveillance, environmental

monitoring, undersea exploration, disaster prevention, and

mine reconnaissance. However, due to the high attenuation of

radio waves in water, UWSNs have to rely on acoustic

communications . The unique characteristics of underwater

acoustic communications and networking, such as low

available bandwidth, long propagation delays, high error

probability, and sensor node (passive or proactive) mobility

(in mobile networks) pose grand challenges to almost every

layer of network protocol stack and applications Most of them

claim to be able to achieve high accuracy with reasonable

energy expenditure. However, these algorithms cannot be

directly applied to UWSNs. This is because most of these

approaches assume negligible propagation delays among

sensor nodes, which is not true in UWSNs. UWSNs often

feature long propagation delays due to the low transmission

speed of sound in water (about 1500 m/s).

In addition, for mobile UWSNs, propagation delays between

nodes are time-varying because of sensor node mobility.

Furthermore, acoustic transmissions are power demanding,

which requires high energy efficiency. All of these features in

UWSNs bring new challenges for time synchronization

algorithms. Recently, some time synchronization algorithms,

such as TSHL, MU-Sync , Mobi-Sync , and D-Sync have been

proposed for UWSNs. In these algorithms, the issue of long

propagation delays is often well addressed. However, they all

ignore one issue or another. For example, TSHL assumes that

nodes are fixed, which makes it not suitable for mobile

networks. While MU-Sync is designed for mobile underwater

networks, it is not energy efficient, and Mobi-Sync is for

dense network.

a) Existing Method

Existing time-synchronization schemes use half of the round

trip time to calculate one way propagation delay. Due to the

node mobility, propagation delays on the way forth and back

are not necessarily identical, especially when nodes move at

high speed. This issue severely decreases the accuracy of most

time synchronization approaches. The technique used by many

of these systems is collaborative filtering (CF), which analyzes

past community opinions to find correlations of similar users

and items to suggest k personalized items (e.g., movies) to a

querying user u. Community opinions are expressed through

explicit ratings represented by the triple (user, rating, item)

that represents a user providing a numeric rating for an item.

Myriad applications can produce location-based ratings that

embed user and/or item locations.

 Both accuracy and energy efficiency is less.

 Long propagation delay.

 The existing systems are ill-equipped to produce

location aware recommendations.

 International Journal of Contemporary Research in Computer Science and Technology (IJCRCST) e-ISSN: 2395-5325
Volume1, Issue 5 (August ’2015)

 IJCRCST © 2015 | All Rights Reserved www.ijcrcst.com
157

 The existing system provides more expensive

operations to maintain the user partitioning structure.

 The existing system does not provide spatial ratings.

b) Proposed Method

A novel time-synchronization scheme, called DA-Sync, which

is a fundamental cross-layer-designed time-synchronization

protocol specific for mobile UWSNs. DA-Sync provides a

fundamental method to synchronize two sensor nodes, i.e., an

ordinary node and a reference node. The scheme proposes a

framework to estimate the doppler shift caused by mobility,

more precisely through accounting the impact of the skew.

(a) A user partitioning technique that exploits user locations in

a way that maximizes system scalability while not sacrificing

recommendation locality

(b) A travel penalty technique that exploits item locations and

avoids exhaustively processing all spatial recommendation

candidates.

Advantages

 Different algorithms have different sync message

(including request and response messages) packet

sizes since they need to carry different amounts of

information.

 High accuracy and high energy efficiency.

 Reduce the nondeterministic errors that are

commonly encountered by time synchronization

algorithms which rely on message exchanges.

CONCLUSION

DA-Sync is the first time synchronization algorithm to utilize

the spatial correlation characteristics of underwater objects,

improving the synchronization accuracy as well as the energy

efficiency. The simulation results show that this new approach

achieves higher accuracy with a lower message overhead.

Explore other underwater mobility patterns, including one that

involves vertical movement to examine the suitability of our

design. Investigate the influence of errors on super node

localization as well as velocity estimation, and also the

influence on MAC layer activities such as packet loss and

retransmission. In this project, we presented DA-Sync, a novel

time synchronization scheme for mobile UWSNs. DA-Sync is

a fundamental cross-layer time-synchronization scheme,

which leverages Doppler effects and employs the Kalman

filter to improve the accuracy of propagation-delay estimation

in time synchronization. Our simulation results showed that

this new approach can achieve high accuracy with low

message overhead [9][10].

REFERENCES

[1] John Heidemann, Wei Ye, Jack Wills, Affan Syed, Yuan

Li, “Research Challenges and Applications for Underwater

Sensor Networking,” IEEE Communications Society (2006),

228-235.

[2] Li Wang, Zhi Bin Wang, et al., “A survey of time

synchronization of wireless sensor networks”, Conference on

Wireless, Mobile and Sensor Networks (CCWMSN07)2007.

[3] Zhengbao Li, Zhongwen Guo, Feng Hong, Lu Hon,

“E2DTS: An energy efficiency distributed time

synchronization algorithm for underwater acoustic mobile

sensor networks,” Ad Hoc Networks 11 (2013) 1372– 1380

[4] Lasassmeh, S.M., Conrad, J.M., “Time Synchronization in

wireless sensor networks: a survey”,IEEE SoutheastCon,

2010.

[5] M. Arulampalam, S. Maskell, N. Gordon, and T. Clapp,

“A Tutorial on Particle Filters for Online Nonlinear/Non-

Gaussian Bayesian Tracking,” vol. 50, no. 2, pp. 174-188,

Feb. 2002.

[6] A.C. Bagtzoglou and N. A., “Chaotic Behavior and

Pollution Dispersion Characteristics in Engineered Tidal

Embayments: A Numerical Investigation,” J. Am. Water

Resources Assoc., vol. 43, pp. 207-219, 2007.

[7] P. Bahl and V.N. Padmanabhan, “RADAR: An In-

Building RFBased User Location and Tracking System,” Proc.

IEEE INFOCOM, pp. 775-784, Mar. 2000.

[8] Ming Xu, Guangzhong Liu, Daqi Zhu, Huafeng Wu, “A

Cluster-Based Secure Synchronization Protocol for

Underwater Wireless Sensor Networks,” Hindawi Publishing

Corporation International Journal of Distributed Sensor

Networks Volume 2014, Article ID 398610, April 2014

[9] Y. Liu, J. Li, and M. Guizani, “Lightweight secure global

time synchronization for wireless sensor networks,” in

Proceedings ofthe IEEE Wireless Communications and

Networking Conference:Mobile and Wireless Networks, pp.

2312–2317, 2012.

[10] A. S. Uluagac, R. A. Beyah, and J. A. Copeland, “Secure

sourcebased loose synchronization (SOBAS) for wireless

sensor networks,” IEEE Transactions on Parallel and

Distributed Systems, vol. 24, no. 4, pp. 803–813, 2013.

