
 International Journal of Contemporary Research in Computer Science and Technology (IJCRCST) e-ISSN: 2395-5325
Volume1, Issue 9 (December ’2015)

IJCRCST © 2015 |All Rights Reserved www.ijcrcst.com

354

RISK MANAGEMENT OF RESOURCE ALLOCATION IN GRID COMPUTING

K.R Palanisamy,
Assistant Professor,

Department of Computer Science,
Mahendra Arts and Science College,

Kallipatti, Namakkal, Tamilnadu.

A.Murugan,
Assistant Professor,

 Department of Computer Science,
Mahendra Arts and Science College,

 Kallipatti, Namakkal, Tamilnadu.

Abstract: The risk of failure is an important property of a Grid resource, especially when scheduling jobs optimally in relation to
resources so as to achieve a business objective. However, in Grid computing, user-centric scheduling algorithms ignore the risk
factor and mostly address the minimization of the cost of the resource allocation, or the overall deadline by which the job must be
executed completely. Therefore, we propose a novel user-centric scheduling algorithm for scheduling Bag of Tasks (BoT)
applications. The algorithm, which aims to meet user requirements, takes into account the risk of failure, the cost of resources and
the job deadline. With this in mind, through simulation, we demonstrate that the algorithm provides a near-optimal solution for
minimizing the cost of executing BoT jobs. Also, we show that the execution time of the proposed algorithm is very low, and is
therefore suitable for solving scheduling problems in real-time.

Keywords: Grid Computing , job scheduling, Resource management

I.INTRODUCTION

Computer scientists in the mid-1990s began to explore a new

technology known as metacomputing. . The I-WAY project—

which was introduced in the ACM/IEEE conference on

Supercomputing 1995 and aims to unifying the resources of

large US supercomputing sites—was the first step in the field

[1]. The I-WAY project was essential to the understanding and

progress of the emerging new technology [2]. The evolution

from metacomputing through to Grid computing occurred with

the introduction of middleware, which was designed in order to

function as a wide-area infrastructure to support data-intensive

applications and diverse online processing [3]. Grid computing

has become the alternative to the traditional tightly coupled

computer systems. Currently, the Grid is defined as the

coordinated sharing of resources and solving problems in

dynamic, multi-institutional virtual organizations. This sharing

must be controlled with clear boundaries regarding what will be

shared, who are permitted to share, and the conditions under

which sharing occurs, as well as whether the resources are

hardware, software, or users [3][4]. The sharing should also be

carried out with the use of standard, open, and general-purpose

protocols and interfaces, and should deliver nontrivial quality

of services (QoS) [4].

II. GRID APPLICATIONS
The interest in Grids is motivated by the novel uses of

computers to solve complex applications. These applications

provide the useful information and services for the reality of

Grids.

Four general classes of applications that runs on Grid systems

is given in [5]. It is summarized as follows:

 Distributed supercomputing: (also known as Meta

computing): these systems solve very large and intensive

problems with the use of multiple computers to achieve

greater processing power. Many of the existing Grid

systems and their applications are based on this class.

 Real-time widely distributed instrumentation systems:

these systems involve real-time data sources. These

systems rely on distributed-storage, network-based caches,

agent-based monitoring, and generalized access control.

 Data-intensive computing: these systems are both data

and compute intensive. These applications focus on

processing and analyzing information and require terabytes

or peta bytes of data to be processed and stored.

 Tele immersion: these systems combine advance display

technologies, computers, and networks to create shared

virtual environments for collaborative design, education,

and entertainments.

III. TYPES OF GRID SYSTEMS

Notably, the types of Grid system are not identical; essentially,

they vary widely in terms of both function and purpose. Grid

systems into three categories [6]:

 Computational Grids [7]: denotes systems which

have higher total computational capacity available for single

applications than the capacity of any constituent machine in the

system. Computational Grids are amongst the first type of Grid

systems. An important objective of Computational Grids is to

benefit from the under-utilised computational resources through

sharing.

 Data Grid [8]: denotes systems which provide an

infrastructure for synthesising new information from data

repositories, such as data warehouses or digital libraries, which

are distributed in a wide area network. Many scientific

applications require access to a large amount of data; therefore,

 International Journal of Contemporary Research in Computer Science and Technology (IJCRCST) e-ISSN: 2395-5325
Volume1, Issue 9 (December ’2015)

IJCRCST © 2015 |All Rights Reserved www.ijcrcst.com

355

data Grids are important when striving to increase the

performance and to thereby achieve high throughput.

 Service Grid [9]: denotes systems which provide

services that are not provided by any single machine. This

category is further subdivided as on-demand, collaborative, and

multimedia Grid Systems. An on-demand Grid category

dynamically aggregates different resources so as to provide

new services, e.g. allocating new machines to a simulation. A

collaborative Grid connects users and applications into

collaborative workgroups.

IV. GRID ARCHITECTURE
Grid architecture organizes components into layers.

Components within each layer share common characteristics.

Figure 1 is taken from [15], and describes a high level view of

the Grid architecture. The architecture contains five layers and

the following is a brief description of each one [5,10].

Figure 2: Grid Architecture

Grid Fabric Layer
The Grid fabric layer provides access to shared resources; these

resources can be physical or logical. Notably, there is tight

interdependence between functions implemented on the fabric

and the supported sharing operations, which means richer fabric

functionality enables sophisticated sharing operation. On the

other hand, light fabric simplifies the development of the Grid.

At a minimum, resources should implement introspection

mechanisms that allow discovery of their structure, state, and

capability, on the one hand, and resource management

mechanisms that provide control of delivered QoS, on the

other.

The shared resources can be divided into three main types of

resources.

Computational Resources, these are the physical machines

that do the processing. Four types of computational resources

are suggested in [8], and are summarised her.

 End user systems: These are common computer

machines; they have a single-functional entry and are

homogeneous.

 Clusters: These are a group of linked computers,

working together closely and are most often highly

homogeneous. Clusters are usually deployed in order

to improve performance and/or availability over that

of a single computer, whilst typically being much

more cost-effective than single computers of

comparable speed or availability.

 Intranets: These are large local networks of resources

within a single organization; they are diverse and

heterogeneous by nature, and different parts of the

network may be under different administration, which

results in less global knowledge regarding the

resources.

 Extranets: These are networks of Intranets. They span

multiple organizations and are more heterogeneous

than Intranets and have less global knowledge

available.

 Storage Resources: These are dedicated storage

machines which can hold very large amounts of data.

This may be a simple file system or a large and

complex database.

 Network Resources: These are the cable switches and

routers that make the physical network. The network is

measured by capacity (bandwidth) and latency.

Grid Connectivity Layer

This layer defines core communication and authentication

protocols. The communication protocols are to enable the

exchange of data between resources. Authentication protocols,

which are built on the communication protocols, are required to

provide secure mechanisms for checking users and resources.

Grid Resource Layer

This layer is built on the protocols of the connectivity layer,

and defines protocols for secure negotiation, initiation,

monitoring, control, accounting, and payment of sharing

resources. The two primary protocols on this layer are

information protocols, and management protocols.

Grid Collective Layer
This layer contains protocols and services not linked with a

specific resource but instead containing interaction across

collection of resources. This can enable the implementation of a

wide variety of sharing behaviours without placing new

requirements on the resources being shared.

Grid Application Layer

This layer contains the user applications. The applications are

implemented by calling services defined at any layer.

V. GRID RESOURCE MANAGEMENT

Grids provide cost-effective and easily scalable resources,

although the commercial uptake of Grid computing has

remained slow. Current Grid middleware (e.g. Globus Toolkit)

still follows the best-effort approach; there is a risk that users

do not get any guarantee that their SLA will be fulfilled.

Application

Connectivity

Fabric

Collective

Resource Transport

Internet

Link

A
p
p

li
ca

ti
o
n

G
rid

 P
ro

to
co

l A
rch

itectu
re

In
tern

et P
ro

to
co

l A
rch

itectu
re

 International Journal of Contemporary Research in Computer Science and Technology (IJCRCST) e-ISSN: 2395-5325
Volume1, Issue 9 (December ’2015)

IJCRCST © 2015 |All Rights Reserved www.ijcrcst.com

356

Furthermore, Grid resource providers are not attracted either:

for a resource provider, agreeing on an SLA without enough

information about the state of resources and the availability of

devices introduces a chance of violating the SLA, which can

then result in a penalty fee. Furthermore, there is a risk attached

to system failure, service unavailability, insufficient resources,

etc., which might lead to SLA violation. Importantly, without a

method for assessing the risk of accepting an SLA, providers

are only able to make uncertain decisions regarding suitable

SLA offers. Furthermore, users would like to evaluate the risk

of a provider violating an SLA so that they are able to make

decisions concerning which Grid resource provider to select

and the acceptable cost/penalty fee associated with the

SLA[11].

The provider computes the risk for each resource and

subsequently allocates the resources to the user job. If the

resulted allocation fails to satisfy the user requirements,

resource reservation is revisited; if it does satisfy the user

requirements, the provider then sends back the SLA, updated

with cost and penalty fee and pre-commit. The user either

commits to the SLA or rejects it. Figure 2 provides an overview

of components in the resource provider infrastructure. The user

sends an SLA request to the provider with the job requirements

(1). The provider‘s Resource Manager requests the Reservation

& Allocation component to reserve the required resources (2).

The Reservation & Allocation component reserves the physical

resources (3) and forward for each reserved resource the time

and duration of the reservation to the Risk Assessor (4). The

Risk Assessor computes for each resource the risk of failure

based on the resource historical information stored in a

database (5). The Monitoring component is responsible for

updating the information in the database. The Risk Assessor

returns the risk of failure information to the Resource Manager

(6). Finally, the Resource Manager sends the SLA response

back to the user (7), either accepting or rejecting the SLA.

Figure 2: Components in Resource Provider

VI.RISK MANAGEMENT IN GRID

Risk management is a paramount importance in computer

systems are less or non-critical, such as web servers or email

servers, and the risk of faults of such systems is also lower than

the risk of faults in critical systems. Nevertheless, a

malfunction of non-critical systems might still result in losses

of devices or money; therefore, risk management on such

systems needs to balance between the cost of the risk

management process and the expected loss as a result of faults.

The risk management process cost should always be lower than

the expected loss, otherwise it is more profitable not to

implement such a process. Grid systems fall into the arena of

non-critical systems.

Risk management can be carried out at various phases during

the lifetime of a Grid system, i.e. from the development of a

Grid infrastructure, through to the deployment and testing

phase, right up to the operational phase. The rest of this section

is devoted to review approaches adopted for risk management

in computer systems in general, and Grid systems in particular.

a) Risk Identification
There are different sources of risks in Grid systems, depending

on the systems phases: for example, in the development phase,

there is a risk of software development failure; in the

operational phase, there is a risk of hardware failure,

information security breaches, etc. Each phase has various

different risks associated with it, and events causing those risks

need to be identified. This paper does not address risk

specifically, although it does identify three factors relevant for

reliability: software failures, hardware availability, and network

failures [12]. Software failures and network failures are

modelled in a probabilistic way, whilst hardware availability is

modelled as the Mean Time To Failure (MTTF), divided by the

sum of MTTF and Mean Time To Repair (MTTR). Other

factors relevant for reliability are ignored in this project.

The scenario-based risk identification approach [13], and

identifies two risk items: the risk to the resource provider, and

the risk to the broker. The risk to the resource provider is the

violation of users‘ SLAs, which is influenced significantly by

resources failure. A source analysis is used to identify the

resource failure, which can be internal, such as hardware

failure, problems in software components, version problems in

used software systems, power supply problems, etc., or

external, such as no delivery on external contracts, natural

disasters, etc. The risk to the broker is the unreliable methods

used by the resource provider to assess the risk of failure. The

broker plays a mediator role between Grid providers and users:

its primary task includes the assignment of the user jobs to

certain resource providers in order to minimize the overall

possibility of failure in carrying out those jobs. Importantly, the

broker aims to minimize the aggregate risk of failure of all

tasks under its management.

b) Risk Assessment

A fundamental concept in risk assessment is the concept of

Risk Exposure (RE), sometimes referred to as risk impact [14].

RE is defined as:

 International Journal of Contemporary Research in Computer Science and Technology (IJCRCST) e-ISSN: 2395-5325
Volume1, Issue 9 (December ’2015)

IJCRCST © 2015 |All Rights Reserved www.ijcrcst.com

357

RE = Prob (UO) * Loss (UO)

Where Prob (UO) is the probability of an unsatisfactory

outcome and Loss (UO) is the loss to the parties affected if the

unsatisfactory outcome occurs. RE is then used to produce a

ranked ordering of the risk items identified.

In consideration of software development projects, the

probability and the loss of an unsatisfactory outcome are

accessed via application of the qualitative risk analysis

technique.

The aim of this survey is to serve as a checklist of the most

important risks for project managers to focus on. [15] the four

risk categories proposed in namely Customer Mandate, Scope

& Requirements, Execution and Environment. A survey of 507

project managers, representing multiple industries, indicated

the extent to which each risk item was present during their most

recently completed projects. A scale from 1–7 is utilized so as

to represent the presence of a risk item; higher numbers

represent a higher presence and lower numbers a lower

presence. The result identifies the risk associated with the

Scope & Requirements and Execution categories to be the most

critical, and that the Environment category is not of great

importance.

c) Resources Failures

The source of a failure falls in one of the following: human

errors and environments, such as power outages, hardware

failure, software failure, network failure and unknown failures.

They find that the time between failure at individual nodes—as

well as at an entire system—is fit well by a gamma or Weibull

distribution with decreasing hazard rate. The observation that

the time between failures is best fitted by a distribution with

decreasing hazard rate is evidence. It has considered the

availability of CPUs in a Grid environment and analyse

availability traces recorded from all the clusters. The finding is

that the best fit distribution is with a shape parameter > 1. The

reason for that is that many of today‘s Grids comprise

computing resources grouped in clusters, the owners of which

may share them only for limited periods of time. Often, many

of a Grid‘s resources are removed by their owner from the

system—either individually or as complete clusters—in order

to serve other tasks and projects; thus, the unavailability of

CPUs is not owing to a system failure but rather their

unavailability by their owner. Most of the previous studies

considered only short-term availability data [16,17].

d) Risk Response

The risk to software development projects—as well as the risk

to information security—is usually treated at the design phase.

The aim is to lower both the likelihood and the impact of an

undesired event. The Software Engineering for Service-

Oriented Overlay Computers (SENSORIA) project [18]

provides tools to enable developers to model their Grid

applications at a very high level of abstraction with the use of

service-oriented extensions of the standard UML, or domain-

specific service-oriented modelling languages to translate into

hidden formal representations by automated model

transformations. Furthermore, such tools are able to perform

early performance analysis, check the functional correctness of

services, and accordingly predict the bottlenecks in

collaborating services.

The responses to the risk of resources failure are to lower the

probability of the failure or to lower the impact. The probability

of failure can be lowered by investing in new infrastructures,

advanced monitoring services, and experienced system

administrators, etc. Importantly, the impact of a failure can be

lowered through the use of fault-tolerance mechanisms, such as

reserve idle resources and check pointing. Check pointing is the

process of periodically saving sufficient information about

application or resource state to avoid having to restart the

application from the beginning [19]. The advantage of

combining the checkpointing with PoF is that checkpointing

will be carried out frequently in relation to those resources with

high PoF, and less frequently concerning those resources with

low PoF. [20].

VII. FACING RESOURCE FAILURE AND

IMPROVE SCHEDULING

Grid environments provide computing platforms for solving

large-scale computational and data-intensive problems in

science, engineering, and commerce. They can be very cost-

effective and easily scalable yet, owing to resource

heterogeneity and to the lack of accurate resource information,

scheduling jobs in such systems can be challenging. In this

chapter, the problem of scheduling Bag of Tasks (BoT)

application on Grid resources is modelled using Mixed Integer

programming. An efficient algorithm for solving the scheduling

problem is presented. The algorithm is evaluated with the use

of a simulation, allowing a wide range of possible scenarios to

be considered.

Grid users submit their application to resource providers

through the use of SLAs. The SLA has the user application

information, as well as the user requirements and constraints.

Notably, requirements can include the type of hardware, the

type of operating system, or even a business objective, such as

minimising the costs associated with executing the application.

Moreover, a constraint could be the deadline by which the

application results should be delivered. Once the resource

provider receive an SLA, it is translated into an allocation

problem whereby the application is allocated to resources for

executing, ensuring that, during the execution time, the user

requirements and constraints are being fulfilled.

Application Model and Scheduling : The type of applications

which are executed on Grid systems can vary from long

running computationally intensive simulations to high demand

and high priority time critical transaction based executions, to

real-time interactive visualizations. Notably, the majority of

these applications are sequential applications, often submitted

in the form of Bags of Tasks (BoT). According to BoT jobs

account for up to 96% of the CPU time consumed in Grid

environments. BoT jobs are composed of sequential,

independent tasks where there is no communication or

dependencies amongst tasks. Examples of BoT jobs include

 International Journal of Contemporary Research in Computer Science and Technology (IJCRCST) e-ISSN: 2395-5325
Volume1, Issue 9 (December ’2015)

IJCRCST © 2015 |All Rights Reserved www.ijcrcst.com

358

Monte Carlo simulations, massive searches (such as key-

breaking), image manipulation applications, data mining

algorithms, and parameter-sweep applications [21]. Therefore,

the type of applications which this thesis is targeting is BoT

jobs.

Executing BoT jobs involves processing N independent tasks

on M distributed resources where N is, typically, much larger

than M. For each task n Є N its computation time is known.

Scheduling the tasks to resources appears simple, but

complexities arise when users place their desired constraints.

The job owners submit their BoT jobs and requirements in real

time (in the reset of the chapter the job owners are referred to as

users); therefore, the scheduler must find the tasks assignment

efficiently and effectively for each user. The scheduling is

carried out in real-time, and the users‘ BoT are assigned as first

in, first out (FIFO). If an assignment is found which has

satisfied the user requirements, the user BoT job is then

accepted; otherwise, the job is rejected.

DRFC ALGORITHM

In the DRFC algorithm, the interest is directed to striking a

balance between the objective function and the constraints in

order to reduce the BoT execution costs. Therefore, tasks

should be allocated to the cheapest suitable resources whenever

possible. The cost per time unit does not reflect the true cost of

processing, especially when resources have different processing

abilities; therefore, the DRFC algorithm will start by

calculating the true processing cost for each resource. This is

defined as the resource processing ability, and is measured in

million instructions per second (MIPS) and divided by the

resource price/time unit.

True Processing Cost = Resource Processing Ability(MIPS)/

Resource Cost per Time Unit

The DRFC algorithm sorts the resources in decreasing order,

based on the true cost of processing. It is clear that tasks cannot

be assigned to resources with ROF higher than the user desired

ROF level; therefore, such resources are removed from the

sorted list.

The next step in the DRFC algorithm is to arrange the tasks,

within a single BoT job, in decreasing order, based on

executing time, to be assigned to resources. Starting from the

first task in the sorted tasks list, the task needs to be assigned to

the first resource in the resources list, if feasible, based on the

values of tjk, Aj, Uj and D. Subsequently, the task is then

removed from the tasks list and the resource variables are

updated accordingly. If the task cannot be assigned to the

resource, it can be kept within the list, at which point the next

task can be considered and the assignment repeated. Once the

DRFC goes through the entire tasks list, if there are tasks in the

tasks list, then go to the next resource in the resources list, start

from the beginning, and repeat the process. This is repeated

until the tasks list is empty and a schedule is found or the

resources list is empty, before the tasks list, and the BoT job is

rejected.

// The number of tasks in the BoT job is e

// The number of resources in the resource provider domain is n

// The MIP parameters are used in the pseudocode

Step 1: // Compute the true processing cost (TPC) for each

resource for (Resource1 to Resourcen)

TPC Resource i = Resourcei Processing Ability(MIPS)/

Resourcei Cost per Time Unit

Step 2: // Sort the resources in decreasing order based on TPC

Step 3: Remove all Resources with ROF > JR

Step 4: // Sort the tasks in decreasing order based on execution

time

tj1>tj2>tj3>….> tje

Step 5: // Assign the tasks to resources Start from the first

Resource in the Resources list (j = 1)

Start from the first Task in the Tasks list (k = 1)

Total cost = 0

While (the Resources list is in not empty)

{

While (the Tasks list is not empty)

{

if (tjk + Aj <= D) then

{

Assign the task to the resource

Remove the task from the Tasks list

Update Aj & Uj

Total cost += tjk * cj

Move to the next task

}

else

Move to the next task in the Tasks list

}

if (the Tasks list is empty) then

Break

else

Move to the next Resource in the Resource list

}

if (the Resource list is empty) then

The BoT job cannot be assigned and therefore rejected

else

{

The assignment for the BoT job is found

The cost of executing the BoT job is Total cost

}

Figure 3: The DRFC Algorithm.

The approach applied to assign tasks to resources—known as

the greedy approach—has a number of advantages over other

approaches. For example, the algorithms in [21] assign the

tasks to resources in the order in which they appear in the BoT

job. This approach is not efficient for two reasons: firstly, it is

inconsistent and a BoT job—scheduled on the same

resources—will have different assignments if the order of tasks

in the BoT job is changed; and secondly, it does not fully utilise

the resources, and a BoT job might be rejected, although an

 International Journal of Contemporary Research in Computer Science and Technology (IJCRCST) e-ISSN: 2395-5325
Volume1, Issue 9 (December ’2015)

IJCRCST © 2015 |All Rights Reserved www.ijcrcst.com

359

assignment is feasible. In order to illustrate these limitations, a

simple example is given.

Assume there are two resources with the same processing

ability, and a BoT job is submitted for processing with 100 time

units as a deadline. Both resources are suitable for executing

the tasks; Resource A is available from the time the BoT job is

submitted, whilst Resource B is available after 50 time units.

Resource A is cheaper than Resource B; thus, tasks will be

assigned to Resource A first. Let‘s assume that the time the

BoT job was submitted is 0. The BoT job has three tasks, which

are to be carried out in the following order:

1. Task 1 execution time is 30 time unit.

2. Task 2 execution time is 40 time unit.

3. Task 3 execution time is 70 time unit.

Assigning the tasks to resources in the order in which they

appear will result in the rejection of the BoT job. Figure 64

shows that, after Task 1 and 2 are assigned, Resource A‘s

available time is 30 time units and Resource B‘s available time

is 50 time units. Both resources are not able to execute Task 3,

which requires 70 time units.

The above assignment approach rejects the BoT job, despite

there being two possible schedules. Accordingly, Task 1 and 3

should be assigned to Resource A, and Task 2 to Resource B ;

otherwise, Task 2 and 3 should be assigned to Resource A and

Task 1 to Resource B. The latter is better as the cheaper

resource is used for a longer period. Essentially, using the

greedy approach will result in the latter assignment, and will

always be consistent regardless of the tasks order.

VIII.CONCLUSION

The work presented in this paper introducing of Grid

computing as the broad. Grid systems which enable access to

heterogeneous resources are discussed. Furthermore, Service

Level Agreements are presented as languages which formalize

QoS requirements, and a discussion on a number of

specifications actively used within the Grid research domain is

presented. A discussion of Grid resource management identifies

a number of limitations in Grid resources scheduling. We

introduce the definition of risk and its application in the real

world. Methods for risk assessments including qualitative and

quantitative are defined. A discussion of risks affecting Grid

systems narrows the research to assessing the Grid resources

risk of failures. In order to highlight risk assessment in Grid

computing, a number of assessment methods applied in the

field are described. Finally work of resources failure to

overcome the DRFC algorithms limitations and the Mixed

Integer Programming model to minimise the cost of executing a

BoT job whilst guaranteeing the user‘s requirements are

presented. DRFC algorithm to determine a near-optimal

solution in an acceptable time frame is described.

IX.REFERENCES

[1]. Roure, D.D., et al., The Evolution of the Grid, in Grid

Computing : Making the Global Infrastructure a Reality, F.

Berman, G. Fox, and A.J.G. Hey, Editors. 2003, J. Wiley: New

York. p. 65-100.

[2]. Foster, I., et al., Software Infrastructure for the I-WAY

High-Performance Distributed Computing Experiment, in Grid

Computing : Making the Global Infrastructure a Reality, F.

Berman, G. Fox, and A.J.G. Hey, Editors. 2003, J. Wiley,: New

York. p. 101-115.

[3]. Foster, I. and C. Kesselman, The Grid in a Nutshell, in Grid

resource management : state of the art and future trends, J.

Nabrzyski, J.M. Schopf, and J. Weglarz, Editors. 2004, Kluwer

Academic Publishers: Boston. p. 3-13.

[4]. Foster, I., C. Kesselman, and S. Tuecke, The Anatomy of

the Grid, in Grid Computing : Making the Global Infrastructure

a Reality, F. Berman, G. Fox, and A.J.G. Hey, Editors. 2003, J.

Wiley,: New York. p. 169-197.

[5]. The grid : blueprint for a new computing infrastructure, ed.

I. Foster and C. Kesselman. 1999, San Francisco: Morgan

Kaufmann Publishers.

[6]. Krauter, K., R. Buyya, and M. Maheswaran, A Taxonomy

and Survey of Grid Resource Management Systems for

Distributed Computing. Software: Practice and Experience,

2002. 32(2): p. 135-164.

[7]. Foster, I. and C. Kesselman, Chapter 2: Computational

Grid, in The grid : blueprint for a new computing infrastructure.

1999, Morgan Kaufmann Publishers: San Francisco. p. 15-53.

[8]. Chervenak, A., et al., The Data Grid: Towards an

Architecture for the Distributed Management and Analysis of

Large Scientific Datasets Journal of Network and Computer

Applications, July 2000. 23(3): p. 187-200.

[9]. Foster, I., et al., The Physiology of the Grid, in Grid

Computing : Making the Global Infrastructure a Reality, F.

Berman, G. Fox, and A.J.G. Hey, Editors. 2003, J. Wiley,: New

York. p. 217-249.

[10]. Berman, F., G. Fox, and T. Hey, The Grid: Past, Present,

Future, in Grid Computing : Making the Global Infrastructure a

Reality, F. Berman, G. Fox, and A.J.G. Hey, Editors. 2003, J.

Wiley,: New York. p. 9-50.

[11]. Foster, I., C. Kesselman, and S. Tuecke, The Open Grid

Services Architecture, in The grid : blueprint for a new

computing infrastructure, I. Foster and C. Kesselman, Editors.

2004, Morgan Kaufmann: Amsterdam ; Boston. p. 215-258.

[12]. D.A6a Predictable / Manageable Service Engineering

Methodology and Prediction Services. September 2010

Available from: http://sla-at-soi.eu/wp-

content/uploads/2009/07/D.A6a-M26-

PredictableServiceEngineeringMethodology.pdf.

 International Journal of Contemporary Research in Computer Science and Technology (IJCRCST) e-ISSN: 2395-5325
Volume1, Issue 9 (December ’2015)

IJCRCST © 2015 |All Rights Reserved www.ijcrcst.com

360

[13]. Risk Management Evaluation. 31/10/2006 Available

from:

http://www.assessgrid.eu/fileadmin/AssessGrid/usermounts/pu

blications/deliverables/AssessGrid_D.1.2_Risk_Management_

Evaluation.pdf.

[14]. ISO/IEC 27005:2008 Information technology -- Security

techniques -- Information security risk management. 2008

Available from:

http://www.iso.org/iso/catalogue_detail?csnumber=42107.

[15]. Kavanaugh, G.P. and W.H. Sanders. Performance

Analysis of Two Time-Based Coordinated Checkpointing

Protocols. in Proceedings Pacific Rim International Symposium

on Fault-Tolerant Systems. 1997. Taipei , Taiwan.

[16]. Nurmi, D., J. Brevik, and R. Wolski, Modeling Machine

Availability in Enterprise and Wide-Area Distributed

Computing Environments in Euro-Par 2005 Parallel Processing.

2005, Springer Berlin / Heidelberg.

[17]. Nadeem, F., R. Prodan, and T. Fahringer. Characterizing,

Modeling and Predicting Dynamic Resource Availability in a

Large Scale Multi-purpose Grid. in 8th IEEE International

Symposium on Cluster Computing and the Grid, CCGRID '08.

2008. Lyon, France

[18]. Software Engineering for Service-Oriented Overlay

Computers (SENSORIA). Available from:

http://www.sensoria-ist.eu.

[19]. Young, J.W., A First Order Approximation to the

Optimum Checkpoint Interval. Communications of the ACM,

1974. 17(9): p. 530-531.

[20]. Zhang, Y., et al., Performance Implications of Failures in

Large-Scale Cluster Scheduling, in Job Scheduling Strategies

for Parallel Processing, D. Feitelson, L. Rudolph, and U.

Schwiegelshohn, Editors. 2005, Springer Berlin / Heidelberg. p.

233-252.

[21]. Silva, F.A.B.d. and H. Senger, Improving Scalability of

Bag-of-Tasks Applications Running on Master-Slave

Platforms. Parallel Comput., 2009. 35(2): p. 57-71.

[22]. Buyya, R., M. Murshed, and D. Abramson. A Deadline

and Budget Constrained Cost-Time Optimization Algorithm for

Scheduling Task Farming Applications on Global Grids. in

Proceedings of the 2002 International Conference on Parallel

and Distributed Processing Techniques and Applications

(PDPTA'02). 2002. Las Vegas, USA.

