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Abstract: The risk of failure is an important property of a Grid resource, especially when scheduling jobs optimally in relation to 
resources so as to achieve a business objective. However, in Grid computing, user-centric scheduling algorithms ignore the risk 
factor and mostly address the minimization of the cost of the resource allocation, or the overall deadline by which the job must be 
executed completely. Therefore, we propose a novel user-centric scheduling algorithm for scheduling Bag of Tasks (BoT) 
applications. The algorithm, which aims to meet user requirements, takes into account the risk of failure, the cost of resources and 
the job deadline. With this in mind, through simulation, we demonstrate that the algorithm provides a near-optimal solution for 
minimizing the cost of executing BoT jobs. Also, we show that the execution time of the proposed algorithm is very low, and is 
therefore suitable for solving scheduling problems in real-time. 
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I.INTRODUCTION 

Computer scientists in the mid-1990s began to explore a new 

technology known as metacomputing.  . The I-WAY project—

which was introduced in the ACM/IEEE conference on 

Supercomputing 1995   and aims to unifying the resources of 

large US supercomputing sites—was the first step in the field 

[1]. The I-WAY project was essential to the understanding and 

progress of the emerging new technology [2]. The evolution 

from metacomputing through to Grid computing occurred with 

the introduction of middleware, which was designed in order to 

function as a wide-area infrastructure to support data-intensive 

applications and diverse online processing [3]. Grid computing 

has become the alternative to the traditional tightly coupled 

computer systems. Currently, the Grid is defined as the 

coordinated sharing of resources and solving problems in 

dynamic, multi-institutional virtual organizations. This sharing 

must be controlled with clear boundaries regarding what will be 

shared, who are permitted to share, and the conditions under 

which sharing occurs, as well as whether the resources are 

hardware, software, or users [3][4]. The sharing should also be 

carried out with the use of standard, open, and general-purpose 

protocols and interfaces, and should deliver nontrivial quality 

of services (QoS) [4]. 

II. GRID APPLICATIONS  
The interest in Grids is motivated by the novel uses of 

computers to solve complex applications. These applications 

provide the useful information and services for the reality of 

Grids.  

Four general classes of applications that runs on Grid systems 

is given in [5]. It is summarized as follows:  

 Distributed supercomputing: (also known as Meta 

computing): these systems solve very large and intensive 

problems with the use of multiple computers to achieve 

greater processing power. Many of the existing Grid 

systems and their applications are based on this class.  

 Real-time widely distributed instrumentation systems: 

these systems involve real-time data sources. These 

systems rely on distributed-storage, network-based caches, 

agent-based monitoring, and generalized access control.  

 Data-intensive computing: these systems are both data 

and compute intensive. These applications focus on 

processing and analyzing information and require terabytes 

or peta bytes of data to be processed and stored.  

 Tele immersion: these systems combine advance display 

technologies, computers, and networks to create shared 

virtual environments for collaborative design, education, 

and entertainments.  

 

III. TYPES OF GRID SYSTEMS  
 

Notably, the types of Grid system are not identical; essentially, 

they vary widely in terms of both function and purpose. Grid 

systems into three categories [6]: 

 Computational Grids [7]: denotes systems which 

have higher total computational capacity available for single 

applications than the capacity of any constituent machine in the 

system. Computational Grids are amongst the first type of Grid 

systems. An important objective of Computational Grids is to 

benefit from the under-utilised computational resources through 

sharing.  

 Data Grid [8]: denotes systems which provide an 

infrastructure for synthesising new information from data 

repositories, such as data warehouses or digital libraries, which 

are distributed in a wide area network. Many scientific 

applications require access to a large amount of data; therefore, 
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data Grids are important when striving to increase the 

performance and to thereby achieve high throughput.  

 Service Grid [9]: denotes systems which provide 

services that are not provided by any single machine. This 

category is further subdivided as on-demand, collaborative, and 

multimedia Grid Systems. An on-demand Grid category 

dynamically aggregates different resources so as to provide 

new services, e.g. allocating new machines to a simulation. A 

collaborative Grid connects users and applications into 

collaborative workgroups.  

 

IV. GRID ARCHITECTURE  
Grid architecture organizes components into layers. 

Components within each layer share common characteristics. 

Figure 1 is taken from [15], and describes a high level view of 

the Grid architecture. The architecture contains five layers and 

the following is a brief description of each one [5,10]. 

 

 

 

 

 

 

 

 

Figure 2: Grid Architecture 

Grid Fabric Layer  
The Grid fabric layer provides access to shared resources; these 

resources can be physical or logical. Notably, there is tight 

interdependence between functions implemented on the fabric 

and the supported sharing operations, which means richer fabric 

functionality enables sophisticated sharing operation. On the 

other hand, light fabric simplifies the development of the Grid. 

At a minimum, resources should implement introspection 

mechanisms that allow discovery of their structure, state, and 

capability, on the one hand, and resource management 

mechanisms that provide control of delivered QoS, on the 

other. 

The shared resources can be divided into three main types of 

resources.  

Computational Resources, these are the physical machines 

that do the processing. Four types of computational resources 

are suggested in [8], and are summarised her.  

 End user systems: These are common computer 

machines; they have a single-functional entry and are 

homogeneous.  

 Clusters: These are a group of linked computers, 

working together closely and are most often highly 

homogeneous. Clusters are usually deployed in order 

to improve performance and/or availability over that 

of a single computer, whilst typically being much 

more cost-effective than single computers of 

comparable speed or availability.  

 Intranets: These are large local networks of resources 

within a single organization; they are diverse and 

heterogeneous by nature, and different parts of the 

network may be under different administration, which 

results in less global knowledge regarding the 

resources.  

 Extranets: These are networks of Intranets. They span 

multiple organizations and are more heterogeneous 

than Intranets and have less global knowledge 

available.  

 Storage Resources: These are dedicated storage 

machines which can hold very large amounts of data. 

This may be a simple file system or a large and 

complex database.  

 Network Resources: These are the cable switches and 

routers that make the physical network. The network is 

measured by capacity (bandwidth) and latency.  

 

Grid Connectivity Layer  

This layer defines core communication and authentication 

protocols. The communication protocols are to enable the 

exchange of data between resources. Authentication protocols, 

which are built on the communication protocols, are required to 

provide secure mechanisms for checking users and resources. 

Grid Resource Layer  

This layer is built on the protocols of the connectivity layer, 

and defines protocols for secure negotiation, initiation, 

monitoring, control, accounting, and payment of sharing 

resources. The two primary protocols on this layer are 

information protocols, and management protocols.  

 

Grid Collective Layer  
This layer contains protocols and services not linked with a 

specific resource but instead containing interaction across 

collection of resources. This can enable the implementation of a 

wide variety of sharing behaviours without placing new 

requirements on the resources being shared.  

 

Grid Application Layer  

This layer contains the user applications. The applications are 

implemented by calling services defined at any layer. 

V. GRID RESOURCE MANAGEMENT  
 

Grids provide cost-effective and easily scalable resources, 

although the commercial uptake of Grid computing has 

remained slow. Current Grid middleware (e.g. Globus Toolkit) 

still follows the best-effort approach; there is a risk that users 

do not get any guarantee that their SLA will be fulfilled. 
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Furthermore, Grid resource providers are not attracted either: 

for a resource provider, agreeing on an SLA without enough 

information about the state of resources and the availability of 

devices introduces a chance of violating the SLA, which can 

then result in a penalty fee. Furthermore, there is a risk attached 

to system failure, service unavailability, insufficient resources, 

etc., which might lead to SLA violation. Importantly, without a 

method for assessing the risk of accepting an SLA, providers 

are only able to make uncertain decisions regarding suitable 

SLA offers. Furthermore, users would like to evaluate the risk 

of a provider violating an SLA so that they are able to make 

decisions concerning which Grid resource provider to select 

and the acceptable cost/penalty fee associated with the 

SLA[11]. 

 

 

The provider computes the risk for each resource and 

subsequently allocates the resources to the user job. If the 

resulted allocation fails to satisfy the user requirements, 

resource reservation is revisited; if it does satisfy the user 

requirements, the provider then sends back the SLA, updated 

with cost and penalty fee and pre-commit. The user either 

commits to the SLA or rejects it. Figure 2 provides an overview 

of components in the resource provider infrastructure. The user 

sends an SLA request to the provider with the job requirements 

(1). The provider‘s Resource Manager requests the Reservation 

& Allocation component to reserve the required resources (2). 

The Reservation & Allocation component reserves the physical 

resources (3) and forward for each reserved resource the time 

and duration of the reservation to the Risk Assessor (4). The 

Risk Assessor computes for each resource the risk of failure 

based on the resource historical information stored in a 

database (5). The Monitoring component is responsible for 

updating the information in the database. The Risk Assessor 

returns the risk of failure information to the Resource Manager 

(6). Finally, the Resource Manager sends the SLA response 

back to the user (7), either accepting or rejecting the SLA. 

 

 
 

Figure 2: Components in Resource Provider 

 

VI.RISK MANAGEMENT IN GRID  

 

Risk management is a paramount importance in computer 

systems are less or non-critical, such as web servers or email 

servers, and the risk of faults of such systems is also lower than 

the risk of faults in critical systems. Nevertheless, a 

malfunction of non-critical systems might still result in losses 

of devices or money; therefore, risk management on such 

systems needs to balance between the cost of the risk 

management process and the expected loss as a result of faults. 

The risk management process cost should always be lower than 

the expected loss, otherwise it is more profitable not to 

implement such a process. Grid systems fall into the arena of 

non-critical systems. 

 

Risk management can be carried out at various phases during 

the lifetime of a Grid system, i.e. from the development of a 

Grid infrastructure, through to the deployment and testing 

phase, right up to the operational phase. The rest of this section 

is devoted to review approaches adopted for risk management 

in computer systems in general, and Grid systems in particular. 

 

a) Risk Identification  
There are different sources of risks in Grid systems, depending 

on the systems phases: for example, in the development phase, 

there is a risk of software development failure; in the 

operational phase, there is a risk of hardware failure, 

information security breaches, etc. Each phase has various 

different risks associated with it, and events causing those risks 

need to be identified. This paper does not address risk 

specifically, although it does identify three factors relevant for 

reliability: software failures, hardware availability, and network 

failures [12]. Software failures and network failures are 

modelled in a probabilistic way, whilst hardware availability is 

modelled as the Mean Time To Failure (MTTF), divided by the 

sum of MTTF and Mean Time To Repair (MTTR). Other 

factors relevant for reliability are ignored in this project. 

 

The scenario-based risk identification approach [13], and 

identifies two risk items: the risk to the resource provider, and 

the risk to the broker. The risk to the resource provider is the 

violation of users‘ SLAs, which is influenced significantly by 

resources failure. A source analysis is used to identify the 

resource failure, which can be internal, such as hardware 

failure, problems in software components, version problems in 

used software systems, power supply problems, etc., or 

external, such as no delivery on external contracts, natural 

disasters, etc. The risk to the broker is the unreliable methods 

used by the resource provider to assess the risk of failure. The 

broker plays a mediator role between Grid providers and users: 

its primary task includes the assignment of the user jobs to 

certain resource providers in order to minimize the overall 

possibility of failure in carrying out those jobs. Importantly, the 

broker aims to minimize the aggregate risk of failure of all 

tasks under its management. 

 

b) Risk Assessment  

A fundamental concept in risk assessment is the concept of 

Risk Exposure (RE), sometimes referred to as risk impact [14]. 

RE is defined as: 
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RE = Prob (UO) * Loss (UO) 

Where Prob (UO) is the probability of an unsatisfactory 

outcome and Loss (UO) is the loss to the parties affected if the 

unsatisfactory outcome occurs. RE is then used to produce a 

ranked ordering of the risk items identified. 

In consideration of software development projects, the 

probability and the loss of an unsatisfactory outcome are 

accessed via application of the qualitative risk analysis 

technique.   

 

The aim of this survey is to serve as a checklist of the most 

important risks for project managers to focus on. [15] the four 

risk categories proposed in namely Customer Mandate, Scope 

& Requirements, Execution and Environment. A survey of 507 

project managers, representing multiple industries, indicated 

the extent to which each risk item was present during their most 

recently completed projects. A scale from 1–7 is utilized so as 

to represent the presence of a risk item; higher numbers 

represent a higher presence and lower numbers a lower 

presence. The result identifies the risk associated with the 

Scope & Requirements and Execution categories to be the most 

critical, and that the Environment category is not of great 

importance. 

 

c) Resources Failures 

The source of a failure falls in one of the following: human 

errors and environments, such as power outages, hardware 

failure, software failure, network failure and unknown failures. 

They find that the time between failure at individual nodes—as 

well as at an entire system—is fit well by a gamma or Weibull 

distribution with decreasing hazard rate. The observation that 

the time between failures is best fitted by a distribution with 

decreasing hazard rate is evidence. It has considered the 

availability of CPUs in a Grid environment and analyse 

availability traces recorded from all the clusters. The finding is 

that the best fit distribution is with a shape parameter > 1. The 

reason for that is that many of today‘s Grids comprise 

computing resources grouped in clusters, the owners of which 

may share them only for limited periods of time. Often, many 

of a Grid‘s resources are removed by their owner from the 

system—either individually or as complete clusters—in order 

to serve other tasks and projects; thus, the unavailability of 

CPUs is not owing to a system failure but rather their 

unavailability by their owner. Most of the previous studies 

considered only short-term availability data [16,17].  

 

d) Risk Response 

The risk to software development projects—as well as the risk 

to information security—is usually treated at the design phase. 

The aim is to lower both the likelihood and the impact of an 

undesired event. The Software Engineering for Service-

Oriented Overlay Computers (SENSORIA) project [18] 

provides tools to enable developers to model their Grid 

applications at a very high level of abstraction with the use of 

service-oriented extensions of the standard UML, or domain-

specific service-oriented modelling languages to translate into 

hidden formal representations by automated model 

transformations. Furthermore, such tools are able to perform 

early performance analysis, check the functional correctness of 

services, and accordingly predict the bottlenecks in 

collaborating services.  

The responses to the risk of resources failure are to lower the 

probability of the failure or to lower the impact. The probability 

of failure can be lowered by investing in new infrastructures, 

advanced monitoring services, and experienced system 

administrators, etc. Importantly, the impact of a failure can be 

lowered through the use of fault-tolerance mechanisms, such as 

reserve idle resources and check pointing. Check pointing is the 

process of periodically saving sufficient information about 

application or resource state to avoid having to restart the 

application from the beginning [19]. The advantage of 

combining the checkpointing with PoF is that checkpointing 

will be carried out frequently in relation to those resources with 

high PoF, and less frequently concerning those resources with 

low PoF. [20]. 

 

VII. FACING RESOURCE FAILURE AND 

IMPROVE SCHEDULING  
 

Grid environments provide computing platforms for solving 

large-scale computational and data-intensive problems in 

science, engineering, and commerce. They can be very cost-

effective and easily scalable yet, owing to resource 

heterogeneity and to the lack of accurate resource information, 

scheduling jobs in such systems can be challenging. In this 

chapter, the problem of scheduling Bag of Tasks (BoT) 

application on Grid resources is modelled using Mixed Integer 

programming. An efficient algorithm for solving the scheduling 

problem is presented. The algorithm is evaluated with the use 

of a simulation, allowing a wide range of possible scenarios to 

be considered.  

 

Grid users submit their application to resource providers 

through the use of SLAs. The SLA has the user application 

information, as well as the user requirements and constraints.  

Notably, requirements can include the type of hardware, the 

type of operating system, or even a business objective, such as 

minimising the costs associated with executing the application. 

Moreover, a constraint could be the deadline by which the 

application results should be delivered. Once the resource 

provider receive an SLA, it is translated into an allocation 

problem whereby the application is allocated to resources for 

executing, ensuring that, during the execution time, the user 

requirements and constraints are being fulfilled.  

 

Application Model and Scheduling : The type of applications 

which are executed on Grid systems can vary from long 

running computationally intensive simulations to high demand 

and high priority time critical transaction based executions, to 

real-time interactive visualizations. Notably, the majority of 

these applications are sequential applications, often submitted 

in the form of Bags of Tasks (BoT). According to  BoT jobs 

account for up to 96% of the CPU time consumed in Grid 

environments. BoT jobs are composed of sequential, 

independent tasks where there is no communication or 

dependencies amongst tasks. Examples of BoT jobs include 
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Monte Carlo simulations, massive searches (such as key-

breaking), image manipulation applications, data mining 

algorithms, and parameter-sweep applications [21]. Therefore, 

the type of applications which this thesis is targeting is BoT 

jobs.  

Executing BoT jobs involves processing N independent tasks 

on M distributed resources where N is, typically, much larger 

than M. For each task n Є N its computation time is known. 

Scheduling the tasks to resources appears simple, but 

complexities arise when users place their desired constraints. 

The job owners submit their BoT jobs and requirements in real 

time (in the reset of the chapter the job owners are referred to as 

users); therefore, the scheduler must find the tasks assignment 

efficiently and effectively for each user. The scheduling is 

carried out in real-time, and the users‘ BoT are assigned as first 

in, first out (FIFO). If an assignment is found which has 

satisfied the user requirements, the user BoT job is then 

accepted; otherwise, the job is rejected.  

 

DRFC ALGORITHM  

In the DRFC algorithm, the interest is directed to striking a 

balance between the objective function and the constraints in 

order to reduce the BoT execution costs. Therefore, tasks 

should be allocated to the cheapest suitable resources whenever 

possible. The cost per time unit does not reflect the true cost of 

processing, especially when resources have different processing 

abilities; therefore, the DRFC algorithm will start by 

calculating the true processing cost for each resource. This is 

defined as the resource processing ability, and is measured in 

million instructions per second (MIPS) and divided by the 

resource price/time unit.  

 

True Processing Cost = Resource Processing Ability(MIPS)/ 

Resource Cost per Time Unit 

 

The DRFC algorithm sorts the resources in decreasing order, 

based on the true cost of processing. It is clear that tasks cannot 

be assigned to resources with ROF higher than the user desired 

ROF level; therefore, such resources are removed from the 

sorted list.  

 

The next step in the DRFC algorithm is to arrange the tasks, 

within a single BoT job, in decreasing order, based on 

executing time, to be assigned to resources. Starting from the 

first task in the sorted tasks list, the task needs to be assigned to 

the first resource in the resources list, if feasible, based on the 

values of tjk, Aj, Uj and D. Subsequently, the task is then 

removed from the tasks list and the resource variables are 

updated accordingly. If the task cannot be assigned to the 

resource, it can be kept within the list, at which point the next 

task can be considered and the assignment repeated. Once the 

DRFC goes through the entire tasks list, if there are tasks in the 

tasks list, then go to the next resource in the resources list, start 

from the beginning, and repeat the process. This is repeated 

until the tasks list is empty and a schedule is found or the 

resources list is empty, before the tasks list, and the BoT job is 

rejected.  

 

// The number of tasks in the BoT job is e  

// The number of resources in the resource provider domain is n  

// The MIP parameters are used in the pseudocode  

Step 1: // Compute the true processing cost (TPC) for each 

resource for ( Resource1 to Resourcen)  

TPC Resource i = Resourcei Processing Ability(MIPS)/ 

Resourcei Cost per Time Unit 

 

Step 2: // Sort the resources in decreasing order based on TPC  

Step 3: Remove all Resources with ROF > JR  

Step 4: // Sort the tasks in decreasing order based on execution 

time  

tj1>tj2>tj3>….> tje 

Step 5: // Assign the tasks to resources Start from the first 

Resource in the Resources list (j = 1)  

Start from the first Task in the Tasks list (k = 1)  

Total cost = 0  

While (the Resources list is in not empty)  

{  

While (the Tasks list is not empty)  

{  

if (tjk + Aj <= D) then  

{  

Assign the task to the resource  

Remove the task from the Tasks list  

Update Aj & Uj  

Total cost += tjk * cj  

Move to the next task  

}  

else  

Move to the next task in the Tasks list  

}  

if ( the Tasks list is empty) then  

Break  

else  

Move to the next Resource in the Resource list  

}  

if (the Resource list is empty) then  

The BoT job cannot be assigned and therefore rejected  

else  

{  

The assignment for the BoT job is found  

The cost of executing the BoT job is Total cost  

}  

 

Figure 3: The DRFC Algorithm.  

 

The approach applied to assign tasks to resources—known as 

the greedy approach—has a number of advantages over other 

approaches. For example, the algorithms in [21] assign the 

tasks to resources in the order in which they appear in the BoT 

job. This approach is not efficient for two reasons: firstly, it is 

inconsistent and a BoT job—scheduled on the same 

resources—will have different assignments if the order of tasks 

in the BoT job is changed; and secondly, it does not fully utilise 

the resources, and a BoT job might be rejected, although an 



  International Journal of Contemporary Research in Computer Science and Technology (IJCRCST)             e-ISSN: 2395-5325 
Volume1, Issue 9 (December ’2015) 

 

IJCRCST © 2015 |All Rights Reserved  www.ijcrcst.com 

359 

assignment is feasible. In order to illustrate these limitations, a 

simple example is given.  

Assume there are two resources with the same processing 

ability, and a BoT job is submitted for processing with 100 time 

units as a deadline. Both resources are suitable for executing 

the tasks; Resource A is available from the time the BoT job is 

submitted, whilst Resource B is available after 50 time units. 

Resource A is cheaper than Resource B; thus, tasks will be 

assigned to Resource A first. Let‘s assume that the time the 

BoT job was submitted is 0. The BoT job has three tasks, which 

are to be carried out in the following order:  

1. Task 1 execution time is 30 time unit.  

2. Task 2 execution time is 40 time unit.  

3. Task 3 execution time is 70 time unit.  

Assigning the tasks to resources in the order in which they 

appear will result in the rejection of the BoT job. Figure 64 

shows that, after Task 1 and 2 are assigned, Resource A‘s 

available time is 30 time units and Resource B‘s available time 

is 50 time units. Both resources are not able to execute Task 3, 

which requires 70 time units.  

The above assignment approach rejects the BoT job, despite 

there being two possible schedules. Accordingly, Task 1 and 3 

should be assigned to Resource A, and Task 2 to Resource B ; 

otherwise, Task 2 and 3 should be assigned to Resource A and 

Task 1 to Resource B. The latter is better as the cheaper 

resource is used for a longer period. Essentially, using the 

greedy approach will result in the latter assignment, and will 

always be consistent regardless of the tasks order.  

 

VIII.CONCLUSION 
 

The work presented in this paper introducing of Grid 

computing as the broad. Grid systems which enable access to 

heterogeneous resources are discussed. Furthermore, Service 

Level Agreements are presented as languages which formalize 

QoS requirements, and a discussion on a number of 

specifications actively used within the Grid research domain is 

presented. A discussion of Grid resource management identifies 

a number of limitations in Grid resources scheduling. We 

introduce the definition of risk and its application in the real 

world. Methods for risk assessments including qualitative and 

quantitative are defined. A discussion of risks affecting Grid 

systems narrows the research to assessing the Grid resources 

risk of failures. In order to highlight risk assessment in Grid 

computing, a number of assessment methods applied in the 

field are described. Finally work of resources failure to 

overcome the DRFC algorithms limitations and the Mixed 

Integer Programming model to minimise the cost of executing a 

BoT job whilst guaranteeing the user‘s requirements are 

presented. DRFC algorithm to determine a near-optimal 

solution in an acceptable time frame is described.   
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