
 International Journal of Contemporary Research in Computer Science and Technology (IJCRCST) e-ISSN: 2395-5325
Volume1, Issue 9 (December ’2015)

IJCRCST © 2015 |All Rights Reserved www.ijcrcst.com

361

A COMPREHENSIVE STUDY ON CLOUD STORAGE SYSTEMS

V.Kalaivani ,
Assistant Professor,

Department of Computer Science,
Mahendra Arts and Science College,

 Kallipatti, Namakkal, Tamilnadu.

N.Keerthi,

Assistant Professor,
Department of Computer Science,

Mahendra Arts and Science College,
Kallipatti, Namakkal, Tamilnadu.

Abstract: Cloud computing is still a rather new field, which is not yet entirely defined. As a result, many interesting research
problems exist, often combining different research areas such as databases, distributed systems or operating systems. This paper
focuses data storage Consistency Rationing as a new transaction paradigm, which not only allows defining the consistency
guarantees on the data instead of at transaction level, but also allows for automatically switching consistency guarantees at run-
time. We present a number of techniques that make the system dynamically adapt the consistency level by monitoring the data
and/or gathering temporal statistics of the data. The last part of the paper is concerned with XQuery as a unified programming
model for the cloud and, in particular, the missing capabilities of XQuery for windowing and continuous queries. XQuery is able to
run on all layers of the application stack, is highly optimizable and parallelizable, and is able to work with structured and semi
structured data.

Keywords: Cloud computing, data storage, XQuery, transactions

I. INTRODUCTION
Cloud computing is characterized by off-site access to shared

resources in an on demand fashion. It refers to both, the service

delivered over the Internet and the hardware and software in the

data centers that provide those services [1][2]. Cloud

computing allows companies to outsource the IT infrastructure

and thus, profit from the economies of scale and the leverage

effect of outsourcing. Cloud storage is an online virtual

distributed storage provided by cloud computing vendors.

Cloud storage services can be accessed via a web service

interface, or a web based user-interface. One of the advantages

is its elasticity. Customers get the storage they need, and they

only pay for their usage. By using cloud storages, small

organizations save the complexity and cost of installing their

own storage devices. The same as cloud computing, cloud

storage has also the properties of being agile, scalable, elastic

and multi-tenant. This paper discusses cloud storage systems in

more detail because of their fundamental role in building

database application in the cloud. Here, we use the name cloud

and database service interchange, as none of the database

services in the cloud really offers the same comfort as a full-

blown database and, on the other hand, cloudstorage services

are extended with more functionality making them more than a

simple storage service [3].

Figure1: Cloud Data storage Architecture

II. FOUNDATIONS OF CLOUD STORAGE

SYSTEMS

The section explains the importance of the CAP theorem for

developing cloud solutions before presenting some of the basic

tools used to build cloud services.

a) The Importance of the CAP Theorem

To achieve high scalability at low cost, cloud services are

typically highly distributed systems running on commodity

hardware. Here scaling just requires adding a new off the-shelf

server. Unfortunately, the CAP theorem states that it is not

possible to achieve Consistency, Availability and tolerance

against network Partitioning at the same time [4]. In order to

completely avoid network partitioning, or at least to make it

extremely unlikely, single servers or servers on the same rack

can be used. Both solutions do not scale and, hence, are not

suited for cloud systems. Furthermore, these solutions also

decrease the tolerance against other failures (e.g., power

outages or over-heating). Also, to use more reliable links

between the networks does not eliminate the chance of

partitioning, and increases the cost significantly. Thus, network

partitions are unavoidable and either consistency or availability

can be achieved. As a result, a cloud service needs to position

itself somewhere in the design space between consistency and

availability.

b) Consistency Guarantees: ACID vs. BASE

Strong consistency in the context of database systems is

typically defined by means of the ACID properties of

 International Journal of Contemporary Research in Computer Science and Technology (IJCRCST) e-ISSN: 2395-5325
Volume1, Issue 9 (December ’2015)

IJCRCST © 2015 |All Rights Reserved www.ijcrcst.com

362

transactions [5]. ACID requires that for every transaction the

following attributes hold:

 Atomicity: Either all of the tasks of a transaction are

performed or none.

 Consistency: The data remains in a consistent state

before the start of the transaction

and after the transaction.

 Isolation: Concurrent transactions result in a

serializable order.

 Durability: After reporting success, the modifications

of the transaction will persist.

If ACID is chosen for consistency, it emphasizes consistency

while at the same time diminishing the importance of

availability. Requiring ACID also implies that a pessimistic

view is taken, where inconsistencies should be avoided at any

price. As a consequence, to achieve ACID properties, complex

protocols such as 2-phase-commit or consensus protocols like

Paxos are required.

On the other extreme, where availability is more important than

consistency, BASE[4] is proposed as the counter-part for

ACID. BASE stands for: Basically Available, Soft state,

Eventual consistent. Where ACID is pessimistic and forces

consistency at the end of every operation, BASE is optimistic

and accepts inconsistency. Eventual consistency only

guarantees that updates will eventually become visible to all

clients and that the changes persist if the system comes to a

quiescent state [6]. In contrast to ACID, eventual consistency is

easy to achieve and makes the system highly available.

III. CLOUD STORAGE SYSTEMS

Basic techniques to compare different cloud services. However,

the focus here is on distributed algorithms. Standard database

techniques (e.g. 2-phase-commit, 3-phasecommit etc.) are

assumed to be known.

Master-Slave/Multi-Master: The most fundamental question

when designing a system is the decision for a master-slave or a

multi-master architecture [7]. In the master-slave model one

device or process has the control over a resource. Every change

to the resource has to be approved by the master. The master is

typically elected from a group of eligible devices/processes. In

the multi-master model the control of the resource is not owned

by a single process; instead, every process/device can modify

there source. A protocol is responsible for propagating the data

modifications to the rest of the group and resolve possible

conflicts.

Distributed hash-table (DHT): A distributed hash-table

provides a decentralized lookup service[8]. Within a DHT the

mappings from keys to values are distributed across nodes often

including some redundancy to ensure fault tolerance. The key

properties of a DHT are that the disruptions caused by node

joins or leaves are minimized, typically by using consistent

hashing , and that no node requires the complete information.

DHT implementations normally differ in the hash method they

apply (e.g. order preserving vs. random), the load-balancing

mechanism and the routing to the final mapping . The common

use case for DHTs is to load-balance and route data across

several nodes.

Quorums: To update replicas, a quorum protocol is often used.

A quorum system has three parameters: a replication factor N, a

read quorum R and a write quorum W.A read/write request is

sent to all replicas N, and each replica is typically on a separate

physical machine. The read quorum R (respectively the write

quorum W) determines the number of replicas that must

successfully participate in a read (write) operation. That is, to

successfully read (write) a value, the value has to be read

(written) by R(W)numbers of replicas. Setting R + W > N

ensures that always the latest update is read. In this model, the

latency of read/write is dictated by the slowest of the read/write

replicas. For this reason, R and W are normally set to be lower

than the number of replicas. Furthermore, by setting R and W

accordingly the system is balanced between read and write

performance. The quorums also determine the availability and

durability of the system

Vector Clocks: A vector clock is a list (i.e, vector) of (client,

counter) pairs created to capture causality between different

versions of the same object [9].Thus, a vector clock is

associated with every version of every object. Each time a

client updates an object, it increments its (client, counter)

pair(e.g., the own logical clock) in the vector by one. One can

determine whether two versions of an object are conflicting or

have a causal ordering, by examining their vector clocks.

Causality of two versions is given, if every counter for every

client is higher or equal to the counter of every client of the

other version. Else, a branch (i.e., conflict) exists. Vector clocks

are typically used to detect conflicts of concurrent updates

without requiring consistency control or a centralized service

[9].

Paxos: Paxos is a consensus protocol for a network of

unreliable processors [10]. At its core, Paxos requires a

majority to vote on a current state - similar to the quorums

explained above. However, Paxos goes further and can ensure

strong consistency as it is able to reject conflicting updates.

Hence, Paxos is often applied in multi-master architectures to

ensure strong consistency - in contrast to simple quorum

protocols, which are typically used in eventually consistent

scenarios.

Gossiping protocols: Gossiping protocols, also referred to as

epidemic protocols, are used to multi-cast information inside a

system [9]. They work similar to gossiping in social networks

where a rumor (i.e., information) is spread from one person to

another in an asynchronous fashion. Gossip protocols are

especially suited for scenarios where maintaining an up-to-date

view is expensive or impossible.

 International Journal of Contemporary Research in Computer Science and Technology (IJCRCST) e-ISSN: 2395-5325
Volume1, Issue 9 (December ’2015)

IJCRCST © 2015 |All Rights Reserved www.ijcrcst.com

363

Merkle Trees: A Merkle tree or hash tree is a summarizing

data structure, where leaves are hashes of the data blocks (e.g.,

pages) [1]. Nodes further up in the tree are the hashes of their

respective children. Hash trees allow to quickly identify if data

blocks have changed and allow further to locate the changed

data. Thus, hash trees are typically used to determine if replicas

diverge from each other.

IV. CLOUD STORAGE SERVICES

This section gives an overview of the available cloud storage

services including open source projects that help to create

private cloud solutions.

a) Commercial Storage Services

Amazon’s Storage Services: The most prominent storage

service is Amazon’s S3[11]. S3 is a simple key-value store. The

system guarantees that data gets replicated across several data

centers, allows key-range scans, but only offers eventual

consistency guarantees. Thus, the services only promise that

updates will eventually become visible to all clients and that

changes persist. More advanced concurrency control

mechanisms such as transactions are not supported. Not much

is known about the implementation of Amazon’s S3.

Internally, Amazon uses another system called Dynamo [10].

Dynamo supports high update rates for small objects and is

therefore well-suited for storing shopping carts etc. The

functionality is similar toS3 but does not support range scans.

Dynamo applies a multi-master architecture where every node

is organized in a ring. Distributed hash tables are used to

facilitate efficient look-ups and the replication and consistency

protocol is based on quorums. The failure of nodes is detected

by using gossiping and Merkle trees help to bring diverged

replicas up-to-date.

Google’s Storage Service: Two Google-internal projects are

known: BigTable and Megastore. The latter, Megastore, is most

likely the system behind Google’s App Engine storage service.

Google’s BigTable [12] is a distributed storage system for

structured data. Big-Table can be regarded as a sparse,

distributed, persistent, multi-dimensional sorted map. The map

is indexed by a row key, a column key, and a timestamp. No

schema is imposed and no higher query interface exists.

BigTable uses a single-master architecture. To reduce the load

on the master, data is divided into so-called tablets and one

tablet is exclusively handled by one slave (called tablet server).

The master is responsible for (re-)assigning the tablets to tablet

servers, for monitoring, load-balancing, and certain

maintenance tasks. Because BigTable clients do not rely on the

master for tablet location information, and read/write request

are handled by the tablet server, most clients never

communicate with the master.

Yahoo’s Storage Service: Two systems are known: PNUTS

[13] and a scalable data platform for small applications [13].

The first is similar to Google’s Big-Table. PNUTS applies a

similar data model and also splits data horizontally into tablets.

In contrast to BigTable, PNUTS is designed to be distributed

across several data centers. Thus, PNUTS assigns tablets to

several servers across data center boundaries.Every tablet

server is the master for a set of records from the tablets. All

updates to a record are redirected to the record master and are

afterwards propagated to the other replicas using Yahoo’s

message broker (YMB). The mastership of a record can migrate

between replicas depending on the usage and thus, increases the

locality for writes. Furthermore, PNUTS offers an API which

allows the implementation of different levels of consistency,

such as eventual consistency or monotonicity.

Microsoft’s Storage Service: Microsoft offers two services:

Azure Storage Service and SQLAzure Database [14]. Windows

Azure storage consists of three sub-services: blob service,

queue service, table service. The blob service is best compared

to a key-value store for binary objects. The queue service

provides a message service, similar to SQS, and also does not

guarantee first in/first out(FIFO) behavior. The tablet service

can be seen as an extension to the blob service. It allows to

define tables and even supports a simple query language.

Within Azure Storage Service data is replicated inside a single

data center and monotonicity guarantees are provided per

record but here exists no notion of transactions for several

records. Little is known about the implementation, although the

imposed data categorization and limitations look similar to the

architecture of BigTable.

 b) Open-Source Storage Systems

This section provides an overview about existing open-source

storage systems. The list is not exhaustive and many other

systems such as Tokyo Cabinet , MongoDB, and Ringo exist.

However, those systems were chosen as they are already more

stable and/or provide some interesting features.

Cassandra: Cassandra [15] was designed by Facebook to

provide a scalable reverse index per user-ailbox. Cassandra

tries to combine the flexible data model of BigTable with the

decentralized administration and always-writable approach of

Dynamo. To efficiently support the reverse index, Cassandra

supports an additional three dimensionaldata structure which

allows the user to store and query index like structures. For

replication and load-balancing, Cassandra makes use of a

quorum system and aDHT similar to Dynamo.

CouchDB: CouchDB [16] is a JSON-based document database

written in Erlang.CouchDB can do full text indexing of the

stored documents and supports expressing views over the data

in JavaScript. CouchDB uses peer-based asynchronous

replication, which allows updating documents on any peer.

When distributed edit conflicts occur, a deterministic method is

used to decide on a winning revision. All other revisions are

marked as conflicting. The winning revision participates in

views and further provides the consistent view. However, every

 International Journal of Contemporary Research in Computer Science and Technology (IJCRCST) e-ISSN: 2395-5325
Volume1, Issue 9 (December ’2015)

IJCRCST © 2015 |All Rights Reserved www.ijcrcst.com

364

replica can still see the conflicting revisions and has the

opportunity to resolve the conflict. The transaction mechanism

of Couch DB can best be compared with snapshot isolation,

where every transaction sees a consistent snapshot. But in

contrast to the traditional snap shot isolation, conflicts do not

result in aborts. Instead, the changes are accepted in different

versions/branches which are marked as conflicting.

HBase: HBase [17] is a column-oriented, distributed store

modeled after Google’s BigTable and is part of the of the

Hadoop project [The09c], an open-source MapReduce

framework . Like BigTable, HBase also relies on a distributed

file system and a locking service. The file system provided

together with Hadoop is called HDFS and is similar to

Google’s File System architecture.

Redis: Redis [18] is a disk-backed, in-memory key-value store

written in C. The most interesting feature is the data model.

Redis not only supports binary strings, integers etc., but also

lists, queues and sets, as well as higher level atomic operations

onhem (e.g., push/pop/replacement of values in list). Redis

does a master-slave replication for redundancy but no shard;

thus, all data must fit in a single system’s RAM.

Scalaris: Scalaris is an in-memory key-value store written in

Erlang. It usesa modified version of the Chord algorithm to

form a DHT, and stores the keys in lexicographical order, thus

enabling range queries. Data is replicated using a quorum

system. Furthermore, Scalar is supports transactions across

multiple keys with ACID guarantees by using an extended

version of Paxos. In a way, Scalaris combines the concept of

Dynamo with Paxos and thus, offers strong consistency.

Project-Voldemort: Project-Voldemort [19] is yet another

key-value store designed along the lines of Dynamo written in

Java. However, it applies a layered architecture, which makes it

possible to exchange the different components of the system.

For example, it is easily possible to exchange the storage

engine or the serialization method. The system seems to be in a

reliable state and is in production at LinkedIn.

c) XQuery as the Programming Model

This section provides an overview of existing programming

models for database applications. As cloud applications are

typically accessed over the internet, the standard user frontend

is web-based. Thus, for the following we will concentrate on

web-based database applications.

V. PROGRAMMING MODELS OVERVIEW

The standard model for web-based applications is still a three-

tier architecture, where the user interface, functional process

logic and data access are developed and maintained as

independent modules as demonstrated in Figure 2 [20]. On the

different layers, different languages and data representations

are used. On the client tier the standard format is HTML or

XML which are then interpreted by the browser. To ”program”

the client the standard languages are JavaScript or Microsoft’s

ActionScript.The middle-tier renders the HTML or XML

documents on request of the client.

Figure 2: Application layers

The prominent languages for the middle-tier are Java/JSP, PHP,

Ruby on Rails and Python. If the application is running inside

the cloud, the middle-tier might be already a cloud service (e.g.,

a Platform as a Service)or hosted on a virtualized machine. The

client typically interacts with the middle-tier by means of REST

calls containing JSON or XMLdata. This data is then

transformed to data types of the host language suchas objects.

Furthermore, the middle-tier is often a layer consisting of

several services which communicate over XML/JSON as well.

To persist and access data, the data tier is responsible for using

a structured(e.g., relational) or a semi-structured (e.g., XML)

data model. To access the data declarative languages such as

SQL or XQuery are used. The communication between the

middle-tier and the data tier is normally done either with

remote procedure calls (RPC) or by means of XML/JSON

messages.

Extending the data-tier language to make it independent of a

host language as done with PL/SQL and IBM’s SQL PL has

been quite a successful approach. Today, programming

extensions are supported by most SQL implementations.SQL as

a programming language has been used extensively in building

many commercial applications including salesforce.com and

the Oracle application suite. In general, industry experience

suggests that it is easier to add a few carefully selected control

flow operations to a database query language than to embed a

foreign type system and persistence model into a procedural

programming language.

 International Journal of Contemporary Research in Computer Science and Technology (IJCRCST) e-ISSN: 2395-5325
Volume1, Issue 9 (December ’2015)

IJCRCST © 2015 |All Rights Reserved www.ijcrcst.com

365

Given the proliferation of XML data, XQuery [21] has recently

been proposed as an alternative language which is able to run

on all layers. XQuery is a declarative language particularly

developed for XML, although not restricted to XML. In the

following sub-section, XQuery is explained in more detail as a

general programming model for web-based database

applications.

XQuery : XQuery is a declarative programming language and

builds on top of the XML Schema data types. Hence,XQuery is

well-suited for parallelization and avoids the impedance

mismatch between XML data types and the types of the hosting

programming language. Since 2007, XQuery 1.0 is

recommended by theW3C[21]. So far, almost fifty XQuery

implementations are advertised on the W3C web pages,

including implementations from all major database vendors and

several open source offerings.

XQuery itself relies on several standards like XML Schema and

XPath and has its own data model, whichis also shared with

XPath and XSLT. In the XPath and XQuery DataModel

(XDM), every value is an ordered sequence of zero or more

items, which can be either an atomic value or a node. Anatomic

value is one of the atomic types defined by XML Schema or is

derived from one of those. A node can be a document, an

element, an attribute, a text, a comment, a processing

instruction or a namespace node. So an instance of the data

model may contain one or more XMLdocuments or fragments

of documents, each represented by its own tree of nodes.

XQuery has several predefined functions and language

constructs to define what and how to transform one instance to

another. The most commonly known feature is the FLWOR

(pronounced ”flower”) expressions, which stands for the

keywords ”ForLetWhere Order Return” and is the equivalent to

”select from where order by” in SQL.

XQuery itself is defined as a transformation from one instance

of the data model to another instance, similar to a functional

programming language. This also allows connecting several

XQueries to each other, as every result is also a valid input.

Input data from outside the XQuery engine can be inserted

applying functions such as document or collection, or by

referencing to the external context (pre bound variables). Each

of these methods then returns an XDM instance that can be

processed by the XQueries.

XQuery for Web-Based Applications: By now, XQuery is

already present in all layers of a web-application. At the data-

tier, XQuery is supported by all mayor database vendors and

several open-source implementations exist [21]. Thus, web-

applications are already able to store data directly as XML and

retrieve it using XQuery. In the middle-tier, XQuery serves

several purposes. One prominent example is the transformation

and routing of XML messages [20] between services. Another

example is enterprise information integration. A third example

involves the manipulation and processing of configuration data

represented in XML. At the client-tier XQuery is not so

established yet, but some initial projects are available to make

XQuery also useable inside the browser. For example, by

default Firefox allows to execute XPath (a subset of

XQuery)inside JavaScript or the XQuery USE MEplug-in

enables to execute user defined XQueries to customize web-

pages. However, in the middle-tier as well as the client-tier

XQuery is used inside a hosting language and therefore the

impedancemismatch still exists.

XQuery as a complete programming language for the middle-

tier has first been investigated inside theXL-platform in the

context of web services . The XL platform provides a

virtualized machine for XQuery code, several language

extensions and a framework responsible for triggering XQuery

programs based on events (i.e., a web service message). Today,

the most successful XQuery-all solution is the Mark Logic

Server . Mark Logic Server combines an XML database with an

XQuery application server. Thus, the data- and middle-tier are

combined in one server. Mark Logic Server is particular well

suited for document-centric applications because of its full-text

search and text analyzing capabilities but not restricted to those

scenarios. Finally, theXQuery in the browser project at ETH

,investigates XQuery as an alternative to JavaScript making it

possible to use XQuery at all layers and completely avoid the

impedance mismatch.

VI.CONCLUSION

Cloud computing has become one of the fastest growing fields

in computer science. It promises virtually infinite scalability

and 100% availability at low cost. To achieve high availability

at low cost, most solutions are based on commodity hardware,

are highly distributed, and designed to be fault-tolerant against

network and hardware failures.

However, the main success factor of cloud computing is not

technology-driven but economical. Cloud computing allows

companies to outsource the IT infrastructure and to acquire

resources on demand. Thus, cloud computing not only allows

companies to profit from the economics of scale and the

leverage effect of outsourcing but also avoids the common

over-provisioning of hardware.

REFERENCES

[1] Brian Hayes. Cloud Computing. ACM Communication,

51(7):9–11, 2008.

[2] The Economist. Let it rise: A special report on corporate IT.

The Economist, 2008.

[3] Peter Mell and Tim Grance. Nist working definition of

cloud computing. http://csrc.nist.gov/groups/SNS/cloud-

computing/index.html, Aug. 2009.

 International Journal of Contemporary Research in Computer Science and Technology (IJCRCST) e-ISSN: 2395-5325
Volume1, Issue 9 (December ’2015)

IJCRCST © 2015 |All Rights Reserved www.ijcrcst.com

366

[4] Eric A. Brewer. Towards Robust Distributed Systems. In

Proc. of PODC, page 7, 2000.

[5] Raghu Ramakrishnan and Johannes Gehrke. Database

Management Systems. McGraw Hill Higher Education, 3rd

edition, 2002.

[6] Yasushi Saito and Marc Shapiro. Optimistic Replication.

ACM Comput. Surv., 37(1):42–81, 2005.

[7] Andrew S. Tanenbaum and Maarten Van Steen. Distributed

Systems: Principles and Paradigms. Prentice Hall, 2 edition,

2006.

[8] Ion Stoica, Robert Morris, David Karger, M. Frans

Kaashoek, and Hari Balakrishnan. Chord: A Scalable Peer-to-

Peer Lookup Service for Internet Applications. In Proc. of

SIGCOMM, pages 149–160. ACM, 2001.

[9] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani,

Gunavardhan Kakulapati, Avinash Lakshman, Alex Pilchin,

Swaminathan Sivasubramanian, Peter Vosshall, andWerner

Vogels. Dynamo: Amazon’s Highly Available

Key-value Store. In Proc. of SOSP, pages 205–220, 2007.

[10] Tushar Deepak Chandra, Robert Griesemer, and Joshua

Redstone. Paxos Made Live - An Engineering Perspective. In

Proc. of PODC, pages 398–407, 2007.

[11] Amazon. Amazon Web Services: Overview of Security

Processes. http://awsmedia.s3.amazonaws.com/pdf/AWS

Security Whitepaper.pdf, Nov. 2009.

[12] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C.

Hsieh, Deborah A. Wallach, Michael Burrows, Tushar

Chandra, Andrew Fikes, and Robert Gruber. Bigtable: A

Distributed Storage System for Structured Data. In Proc. of

OSDI, pages 205–218, 2006.

[13] Brian F. Cooper, Raghu Ramakrishnan, Utkarsh

Srivastava, Adam Silberstein, Philip Bohannon, Hans-Arno

Jacobsen, Nick Puz, Daniel Weaver, and Ramana Yerneni.

PNUTS: Yahoo!’s hosted data serving platform. PVLDB,

1(2):1277–1288, 2008.

[14] Max Ross. Transaction Isolation in App Engine.

http://code.google.com/appengine/articles/transaction

isolation.html, Sep. 2009.

[15] Jason Lee. SQL Data Services - Developer Focus

(Whitepaper). http://www.microsoft.com/azure/data.mspx, Jun.

2008.

[16] L. Youseff, M. Butrico, and D. Da Silva. Towards a

Unified Ontology of Cloud Computing. In Grid Computing

Environments Workshop (GCE08), 2008.

[17] Facebook. Cassandra.

http://incubator.apache.org/cassandra/, Aug. 2009.

[18] The Apache Software Foundation. HBase.

http://hadoop.apache.org/hbase/, Aug. 2009.

[19] The Apache Software Foundation. The CouchDB Project.

http://couchdb.apache.org/, Aug. 2009.

[20] The Apache Software Foundation. The Apache Hadoop

project . http://hadoop.apache.org, Aug. 2009.

[21] Don Chamberlin and Jonathan Robie. XQuery 1.1 - W3C

Working Draft 3, Dec. 2008.

http://awsmedia.s3.amazonaws.com/pdf/AWS%20Security%20Whitepaper.pdf
http://awsmedia.s3.amazonaws.com/pdf/AWS%20Security%20Whitepaper.pdf
http://awsmedia.s3.amazonaws.com/pdf/AWS%20Security%20Whitepaper.pdf
http://code.google.com/appengine/articles/transaction%20isolation.html
http://code.google.com/appengine/articles/transaction%20isolation.html

