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Abstract: Multidimensional data has been a challenge for data analysis because of the inherent sparsely of the points. In this 
paper, we have present a novel data preprocessing technique called shrinking which optimizes the inherent characteristic of 
distribution of data. This data reorganization concept can be applied in many fields such as pattern recognition, data clustering 
and signal processing. Then, as an important application of the data shrinking preprocessing, we propose a shrinking-based 
approach for multi-dimensional data analysis which consists of three steps: data shrinking, cluster detection, and cluster 
evaluation and selection. The process of data shrinking moves data points along the direction of the density gradient, thus 
generating condensed, widely-separated clusters. The data-shrinking and cluster-detection steps are conducted on a sequence 
of grids with different cell sizes. The clusters detected at these scales are compared by a cluster-wise evaluation measurement, 
and the best clusters are selected as the final result. This paper shows that this approach can effectively and efficiently detect 
clusters in both low- and high-dimensional spaces. 
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I. INTRODUCTION 
 

Multi-dimensional data has proceeded at an explosive rate in 

many disciplines with the advance of modern technology. 

Data preprocessing procedures can greatly benefit the 

utilization and exploration of real data. Clustering is useful 

for discovering groups and identifying interesting 

distributions in the underlying data. Data preprocessing is 

commonly used as a preliminary data mining practice. It 

transforms the data into a format that will be more easily and 

effectively processed for the purpose of the users. There are a 

number of data preprocessing techniques: data cleaning, data 

integration, data transformation and data reduction.  

 

Data cleaning can be applied to remove noise and correct 

inconsistencies in the data. Data integration merges data from 

multiple sources into a coherent data store. Data 

transformation may improve the accuracy and efficiency of 

mining algorithms involving distance measurements. Data 

reduction can reduce the data size. These data processing 

techniques, when applied prior to mining, can substantially 

improve the overall quality of the patterns mined and/or the 

time required for the actual mining [1]. In this paper, we first 

present a data shrinking technique for preprocessing; then, we 

propose a cluster detection approach by finding the connected 

components of dense cells and a cluster evaluation approach 

based on the compactness of clusters.  

 

II. CLUSTERING ANALYSIS IN MULTI 

DIMENSIONAL DATA 
 

Cluster analysis is used to identify homogeneous and well-

separated groups of objects in databases. The need to cluster 

large quantities of multi-dimensional data is widely 

recognized. It is a classical problem in the database, artificial 

intelligence, and theoretical literature, and plays an important 

role in many fields of business and science. 

Each of the existing clustering algorithms has both 

advantages and disadvantages. The most common problem is 

rapid degeneration of performance with increasing 

dimensions [2], particularly with approaches originally 

designed for low-dimensional data. The difficulty of high-

dimensional clustering is primarily due to the following 

characteristics of high-dimensional data: 

 

 High-dimensional data often contain a large amount of 

noise (outliers). The existence of noise results in clusters 

which are not well-separated and degrades the 

effectiveness of the clustering algorithms. 

 

 Clusters in high-dimensional spaces are commonly of 

various densities. Grid-based or density-based algorithms 

therefore have difficulty choosing a proper cell size or 

neighborhood radius which can find all clusters. 

 

 Clusters in high-dimensional spaces rarely have well-

defined shapes, and some algorithms assume clusters of 

certain shapes. For example, the algorithms in [3, 4] can 

efficiently find convex or spherical clusters, but they fail 

to detect non-spherical clusters because of their specific 

definition of similarity criteria. 

 

 The effectiveness of grid-based approaches suffer when 

data points are clustered around a vertex of the grid and 

are separated in different cells, as shown in Figure 1. In 

the d-dimensional space Rd, there may be 2d points 

distributed in this manner. The cluster formed by these 

points will be ignored because each of the cells covering 

the cluster is sparse. 
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Figure 1: The four neighboring cells contain no other 

points. 

 

There are also other algorithms related to data movement [5, 

6], however, the existing ones are not suitable for the high 

dimensional data of large size because based on their 

definition, the time to run their process is O(n2 * p) where n 

is the size of the input data and p is the number of iterations 

in the iterative process. So they are very time-consuming. A 

lot of approaches [7] have been proposed for evaluating the 

results of a clustering algorithm. Each clustering algorithm 

has its advantages and disadvantages. For a data set with 

clusters of various sizes, density, or shape, different 

clustering algorithms are best suited to detecting clusters of 

different types in the data set. No single approach combines 

the advantages of these various clustering algorithms while 

avoiding their disadvantages. 

 

III. PROPOSED APPROACH 
 

This novel data preprocessing technique named shrinking 

which optimizes the inherent characteristic of distribution of 

data. For a real data set, the natural data groups (if existing) it 

contains may be very sparse. In the data preprocessing step, if 

we could make data points move towards the centroid of the 

data groups they belong to, the natural sparse data groups will 

become denser, thus easier to be detected, and noises can be 

further isolated. Intuitively, a dense area “attracts” objects in 

sparse areas surrounding it, and becomes denser. Here we 

assume a data point is attracted to neighboring data points, 

and it moves towards the way the attraction is the strongest. 

In other words, the direction it is attracted to is determined by 

the distribution of its neighboring data points. Our data 

shrinking preprocessing computes a simulated movement of 

each data point in a data set that reflects its “attraction” to 

neighboring data points. We can also refer to the concept of 

infiltration mechanism [8] in which materials such as water 

moves from denser areas to sparser ones whereas in our case, 

the data point will move to a denser area nearby. When 

computing the attraction on a data point, those points far 

away from this data point can be ignored due to the little 

effect they impose on it. This data reorganization concept can 

be applied in many fields such as pattern recognition, data 

clustering and signal processing to facilitate a large amount of 

data analysis categories. Then, as an important application of 

the data shrinking preprocessing, we propose a shrinking 

based approach for multi-dimensional data analysis to address 

the inadequacies of current clustering algorithms in handling 

multi-dimensional data. This clustering method is combined 

with a cluster-wise evaluation measurement to select the best 

clusters detected at different scales. 

 

 

The proposed algorithm consists of three steps which are data 

shrinking, cluster detection, and cluster evaluation and 

selection. In the data-shrinking step, data points move along 

the direction of the density gradient, leading to clusters which 

are condensed and widely-separated. Following data 

shrinking, clusters are detected by finding the connected 

components of dense cells. The data-shrinking and cluster-

detection steps are grid-based. Instead of choosing a grid with 

a fixed cell size, we use a sequence of grids of different cell 

sizes. Our technique also includes a method to avoid the 

problem caused by points clustered near a vertex of a grid and 

separated in different cells, as shown in Figure 1. For each 

cell size, the processes of data shrinking and cluster detection 

are performed on two interleaved grids. Then, in the cluster 

evaluation and selection step, it evaluates clusters detected at 

different scales via a cluster-wise evaluation measurement 

and selects the best clusters as the final result. Although the 

idea of moving data points according to the density gradient 

has been around quite some time [9], here distinguishes 

mainly in the following two aspects:  

 

 A grid-based shrinking and evaluation approach is 

proposed. Instead of choosing a grid with a fixed cell 

size, we use a sequence of increasing grid sizes to catch 

the cluster structures of the input data in different scales. 

At each scale, two grids are used; the second one is 

shifted diagonally from the first one. 

 

 We integrate a compactness-based cluster evaluation into 

the framework. The compactness based evaluation 

computes both inter-cluster and intra-cluster distances 

(which model the inter-cluster and intra-cluster 

relationships, respectively) and evaluate a cluster’s 

compactness with the ratio of the second distance to the 

first one.  

 

IV. GRID SCALES FOR THE SHRINKING-

BASED CLUSTERING APPROACH 
 

To demonstrate the advantages of the data shrinking 

preprocessing, we applied it to the multi-dimensional 

clustering problem which plays an important role in many 

fields of business and science. We propose a grid-based 

approach to data shrinking and cluster detection.  

 

Choosing grids: Grid-based clustering methods depend 

heavily on the proper selection of grid-cell size. Without prior 

knowledge of the structure of an input data set, proper grid-

cell size selection is problematical. This is proposing a 

multiscale gridding technique to address this problem. Instead 

of choosing a grid with a fixed cell size, we use a sequence of 

grids of different cell sizes. Data shrinking and cluster 

detection are conducted on these grids, the detected clusters 

are compared, and those clusters with the best quality are 

selected as the final result. 

 

Throughout this paper, we assume that the input data set X is 

X = {X1,X2,…,Xn}; 
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Which is normalized to be within the hypercube (0;1)
d
 ∁  R

d
. 

 

This apply is a simple histogram-based approach to get 

reasonable grid scales for the data shrinking process. We scan 

the input d-dimensional data set X once and get the set of 

histograms, one for each dimension: 

 

H = {h1,h2,….,hd}: 

 

Each bin of a histogram denotes the number of data points in 

a certain segment on this histogram. 

 

We set up a number b as a quantity threshold. It is used in the 

following algorithm to help generate density spans. Here we 

first give the definition of density span which will help 

understand the algorithm: 

 

Definition 1: A density span is a combination of consecutive 

bins’ segments on a certain dimension in which the amount of 

data points exceeds b. A size of a density span is the sum of 

the sizes of the bins it includes. For each histogram hi, 

i=1,...,d, we sort its bins based on the number of data points 

they contain in descending order. Then we start from the first 

bin of the ordered bin set and merge it with its neighboring 

bins until the total amount of data points in these bins exceeds 

b. At each step, we check the number of points in the bin on 

the left side and the one on the right side of the currently 

span, and choose the bin with more points in it to merge with. 

Thus a density span is generated as the combination of the 

segments of these bins. If a current span has less than b data 

points, but its left and right neighbors have both been 

assigned to a precious span already, we stop the operation on 

the current span and call it as an incomplete span which will 

not be considered in the following procedure of generating 

multiple grid scales. The operation is continued until all the 

non-empty bins of this histogram is in some density spans or 

some incomplete spans. Each histogram has a set of density 

spans. 

 

First we sort the sizes by ascending order. Then starting from 

the smallest size so, we include the current size into cluster 

T1 until we come across a size s0 such that s0¡so > so *5%. 

Then we start from s0 and do the same procedure to get 

cluster T2, and so on. For each cluster Ti, we denote the 

number of sizes in it as Ni, and denote the average value of 

the sizes in it as Si. We sort Si based on Ni by descending 

order and choose first Ks ones as the multiple scales for the 

following data shrinking and cluster detection procedures. In 

other words, those sizes of density spans which appear often 

are chosen. Algorithm 1 describes the procedure of the 

density span generation on a certain dimension. The value b 

depends on the size of the input data set X. Normally it can be 

set as a certain percentage of the number of data points in X. 

There is a balance in choosing a value for Ks: smaller Ks can 

increase the precision of cluster detection, while larger Ks can 

save time. The time complexity for this method is determined 

by the dimensionality d of X and the amount of bins Bn in 

each histogram. The time required to perform Algorithm 1 is 

O(Bn logBn). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The multiscale gridding scheme proposed above not only 

facilitates the determination of a proper cell size but also 

offers advantages for handling data sets with clusters of 

various densities.   The grid with a smaller cell size (shown in 

solid lines) can distinguish the left two clusters but fails to 

detect the right cluster, while the converse is true for the grid 

with a larger cell size (shown in dashed lines). For data sets 

of this kind, a multiscale gridding method is needed to 

distinguish all clusters. 

 

V. DATA SHRINKING 
 

In data shrinking, each data point moves along the direction 

of the density gradient and the data set shrinks toward the 

inside of the clusters. Points are “attracted” by their neighbors 

and move to create denser clusters. This process is repeated 

until the data are stabilized or the number of iterations 

exceeds a threshold. The neighboring relationship of the 

points in the data set is grid-based. The space is first 

subdivided into grid cells. Points in sparse cells are 

considered to be noise or outliers and will be ignored in the 

data-shrinking process. Assume a dense cell C with 

neighboring cells surrounding C. Data shrinking proceeds 

iteratively; in each iteration, points in the dense cells move 

toward the data centroid of the neighboring cells. The 

iterations terminate if the average movement of all points is 

less than a threshold or if the number of iterations exceeds a 

threshold. The major motivation for ignoring sparse cells is 

computation time. If the grid cells are small, the number of 

non-empty cells can be O (n), where n is the number of data 

points. The computation of data movement for all non-empty 

cells takes a length of time quadratic to the number of non-

empty cells, which is O (n2). By ignoring sparse cells in the 

data movement, dramatic time savings can be realized. 

 

 

VI.CLUSTER EVALUATION AND 

SELECTION 
 

After the cluster detection step, we evaluate the clustering 

results. There are several ways to define what is a good 

clustering ([11] .etc). Most conventional clustering validity 

measurements  evaluate clustering algorithms by measuring 

Algorithm 1 (Density span generation) 

Input: histogram hi 

Output: Density span set of hi 

1) Sort the bins of hi in the descending order; 

2) Beginning from the first bin of the ordered 

bin set, merge it with its neighbors until the 

total amount of data points included exceeds b; 

3) Repeat step 2 until all non-empty bins are 

included in some density spans or some 

incomplete spans; 

4) Output the density span set. 
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the overall quality of the clusters. However, each clustering 

algorithm has its advantages and disadvantages. For a data set 

with clusters of various sizes, densities, or shapes, different 

clustering algorithms are best suited to detecting the clusters 

of different types in the data set. No single approach 

combines the advantages of the various clustering algorithms 

while avoiding their disadvantages. Here, introduce a cluster-

wise measurement which provides an evaluation method for 

individual clusters. 

 

A cluster in a data set is a subset in which the included points 

have a closer relationship to each other than to points outside 

the cluster. In the literature [12, 13], the intra-cluster 

relationship is measured by compactness and the inter-cluster 

relationship is measured by separation. Compactness is a 

relative term; an object is compact in comparison to a looser 

surrounding environment. We use the term compactness to 

measure the quality of a cluster on the basis of intra-cluster 

and inter-cluster relationships. This definition of compactness 

is used to evaluate clusters detected at different scales and to 

then select the best clusters as the final result. 

 

 

VII.CONCLUSION  
 
In this paper, we proposed a new data preprocessing 

technique called shrinking which optimizes the inherent 

characteristic of distribution of datas. We applied the 

technique and proposed a novel data analysis method which 

consists of three steps: data shrinking, cluster detection, and 

cluster evaluation and selection. The methods can be 

effectively and efficiently detect clusters of various densities 

or shapes in a noisy data set of any dimensions. The data-

shrinking process still poses many open issues. The shrinking 

process as applied to a data set of well-formed shape is a 

repeated process which transforms the data set into a shape 

with no boundary. However, most real-world, high-

dimensional data sets do not have well-defined shapes. It is 

therefore of both theoretical and practical interest to fully 

understand how the shape of a real data set is transformed 

during the shrinking process. This understanding would 

provide insights into the geometrical and topological 

properties of high-dimensional data sets. 
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