
 International Journal of Contemporary Research in Computer Science and Technology (IJCRCST) e-ISSN: 2395-5325
Volume2, Issue 5 (May ’2016)

IJCRCST © 2016 | All Rights Reserved www.ijcrcst.com

744

TAP-WAVE-RUB ANDROID APPLICATION (TWRDROID): A
LIGHTWEIGHT PERMISSION ENFORCEMENT APPROACH TO

EMERGING SMARTPHONE MALWARE.

K.Vijayalakshmi,
 Mobile and Pervasive Computing,
Anna University Regional Campus,

Coimbatore, India.

 J.Jayavel,
 Teaching Fellow,

Anna University Regional Campus,
Coimbatore, India.

Abstract—Smartphones are undoubtedly becoming ubiquitous. Malware has been a serious issue for smartphones

and continuing advancing. Traditional defense mechanisms to malware, are not suitable for smartphones due to their

resource intensive constraints. This made the malware to spread enormously all over the smartphone users. In this

paper, we present the TWR (Tap-Wave-Rub) enhanced android application permission model which incorporates the

denied access for the smartphones malware. And also the developing android application TWRDROID will review the

permissions of apps and users can find whether it is malicious or not. It can remove the malicious applications. This

paper is designed to enhance the security features of the android especially in the permission-based access control

of the android application. This Android application will make the users who are prompted to deny or grant individual

permissions to an application which needed for the first time. The proposed approach will be very effective for

malware detection/prevention with low False Negative Rate and False Positive Rate, while imposing little to no

additional burden on the smartphone users.

Index Terms— Android security application, Android permission mechanism, Malware, Smartphone security,

Malware detection/prevention

I.INTRODUCTION

A smartphone is an advanced mobile operating system

phones which combines features of a PC operating system with

other features useful for mobile use. Smartphone malware is

easily spread through an insecure app store. Often malicious

software is hidden in pirated versions of legitimate apps, which

are then distributed through third-party application

stores. Malicious software risk also comes from what is known

as an "update attack", where a legitimate android application is

later changed to include a malware component, which

smartphone users then install when they are notified that the

app has been updated. Android is a free, open source OS built

on Linux for mobiledevices, including the Linux kernel, the

Intermediate layer, the Application Framework layer and the

Application layer in figure 1.

The Android security is based mainly on permission models. A

permission is a controlling access to a part of the code or to

data on the device. The biggest flaw is that the user cannot

decide to grant individual permissions, while denying others.

Many smartphone users, though an app might request a

suspicious permission among many legitimate permissions,

will still confirm the installation. Because of the above said

problems, researchers have been involved to determine

techniques that uses individual permissions and the

combination of permissions to detect and characterize malware.

The limitation is imposed to protect critical data and code that

might be misused to damage the user experience.

Figure 1: Android Architecture.

II.RELATED WORK

The most closely related concept to ours is the one proposed in

[1].It proposes the TWR enhanced permission model in the

android platform. Any android application needs to get an

user’s acceptance for the requested permissions to access the

 International Journal of Contemporary Research in Computer Science and Technology (IJCRCST) e-ISSN: 2395-5325
Volume2, Issue 5 (May ’2016)

IJCRCST © 2016 | All Rights Reserved www.ijcrcst.com 745

privacy-related resources. The idea of the TWR system model

is to add another layer of permission check before the original

android permission check. It also utilizes the concept that

whether there are hardware interruptions to differentiate

software initiated activity and human initiated activity. To

efficiently detect malware from apps available on official and

third-party sources, many efforts have been contributed to

studying the nature of smartphone environments and their

applications in the past ten years. Google tests apps for possible

malicious behaviour through a service called Bouncer [2].

Bouncer examines android apps submitted to the Android

Market automatically by execution inside a virtual Android

platform in Google’s cloud infrastructure. Even though

malware download numbers reduced since the installation of

Bouncer, this service does not provide security against modern

attack approaches [3]. Enck et al. [4] suggested a policy-based

system called Kirin to detect malware at install time based on

undesirable combination of permissions. Diverse concepts

evaluate the detection of malware with permissions using

machine learning on Android [5-9]. They all realize that a

permission-based mechanism can be used as a quick filter to

identify malicious android applications. Zhou and Jiang [10]

characterize Android applications (both normal and malicious

software applications) with individual permissions imposing on

the number of occurrences of permissions in those groups. The

Android environment incorporates the permission system

model to restrict applications inorder to secure the sensitive

resources of the users [11]. Thus, the permission system was

designed to protect users from applications which has invasive

behaviours, but its effectiveness highly depends on the users

understanding of permission approval. The developer is

responsible for determining appropriately which permissions an

application requires. According to these papers [12, 13] and

[14], many users do not understand what each permission

means and blindly granting permission to them, allowing the

application to access sensitive information of the user.

III.TECHNICAL FOUNDATION

Android is a privilege-separated OS, in which each apps runs

with a distinct system identity. Further security features of

android are a "permission" mechanism that enforces restrictions

on the specific operations that a particular process can perform,

and single-URI permissions for granting ad hoc access to

specific resources. A basic Android application has no

permissions associated with it by default, meaning it cannot do

anything that would affect the user experience or any data on

the device. To make use of protected features of the device, the

developer must include one or more <uses-permission> tags in

app manifest file of any android application. Table 1 gives

some examples of permissions. System permissions are

classified into several protection levels. The two most

important protection levels are normal and dangerous

permissions

 Normal permissions implies areas where android app needs

to access data or resources outside the app's sandbox, but

where there's very little risk to the user's privacy or the

operation of other apps.

 Dangerous permissions implies areas where the app wants

data or resources that involve the user's private information,

or could potentially affect the user's stored data or the

operation of other apps.

 A central design of the Android security architecture is that no

android application, by default, has permission to perform any

operations that would adversely affect the operating system, or

the user’s privacy-related information. This includes reading or

writing the user's private data (such as SMS or contacts),

accessing the internet, keeping the device awake, etc.

Because each Android application works in a process sandbox,

apps must openly share resources and data. They do this by

declaring the permissions they need for additional capabilities

which are not provided by the basic sandbox. Usually android

applications declare the permissions they require, and the

Android operating system prompts the user for consent.

Table 1: Examples of Permissions.

IV. PROPOSED WORK

In Android 6.0 Marshmallow, the permissions system was

changed to allow the user to control an android apps

permissions individually, to block applications if desired from

having access to the device's contacts, calendar, phone, sensors,

SMS, location, microphone and camera. Full permission

control is only possible with root access to the device.

Below 6.0 versions in Android system, the application requests

Manifest Permission Strings Description

Call

Phone

 Modify

Phone

State

Write

SMS

Read

Contacts

Allows an application to initiate a

phone call without going through the

Dialer user interface for the user to

confirm the call being placed.

Allows modification of the telephony

state such as power on

Allows an application to write SMS

messages.

Allows an application to read the users

contacts data.

 International Journal of Contemporary Research in Computer Science and Technology (IJCRCST) e-ISSN: 2395-5325
Volume2, Issue 5 (May ’2016)

IJCRCST © 2016 | All Rights Reserved www.ijcrcst.com 746

permission when it installs an application. Users can't install

the application if they do not accept the application permission.

Therefore, users accept the permission without checking the

risk of the permission. However, it is not wise to press the

accept button carelessly, because it may result in a serious

security threat such as a malicious application What we found

from the android security applications that have been

developed up to now is that most applications have very simple

permissions. To mitigate this problem, we are going to develop

an android application for managing permission, which is

named as TWRDROID. This TWRDROID android application

which will review the permissions of apps and users can find

whether it is malicious or not. It can remove the malicious

applications. Compared with those applications, the newly

developing has functions such as permissions as well as the

classification by the level of the risk. In this work we utilized

Java Micro Edition, Android Software Development Kit,

Eclipse the Integrated Development Environment, and Java

Programing Language. The environment of the operation of

TWRDROID is Android 4.0(API 14) and above, and it doesn't

require any permission for usage.

a) Review of TWR Enhanced Permission Model [1]

Permission mechanisms have become usual on smartphone

operating systems to provide access control to sensitive

services for installed third party android application. The

Android environment has the most extensive permission

system model and become a market leader. Thus, we review the

design of TWR system on the Android platform. The idea of

the TWR system model is to add another layer of permission

check before the original APC (Android permission check). Let

begin with the assumption that the adversary is not able to

maliciously alter the kernel control flow. Intercepted

permission requests in the android are handled by the five

components in the TWR’s architecture: TWR

PermissionChecker, TWR GestureManager, TWR

GestureExtractor, TWR TemplateCreator, and TWR

GestureDatabase. The architecture of TWR is depicted in

Figure 3.The TWR PermissionChecker stands in front of the

original APC. When an application begins a request to access a

sensitive service, the request is intercepted by TWR

PermissionChecker. This component interacts with TWR

GestureManager to check whether the requested service is

protected by a certain gesture. If not, the request is forwarded

to the APC as usual. Otherwise, TWR GestureManager

interacts with the TWR GestureExtractor to begin collecting

gesture data (tapping, waving, and rubbing in this paper). Later,

the captured data is sent to the TWR GestureManager to

proceed further. For user-dependent gesture recognition, we

prefer to create a gesture template which is used as a reference

in the original recognition stage. The user can interact with the

TWR TemplateCreator application to register a new gesture

template, to update and delete exiting gesture templates. TWR

TemplateCreator is an Android application which allows

interaction between TWR and the Android user. When the user

creates, deletes, or modifies the gesture data, it needs to

retrieve and store the gesture template to TWR

GestureDatabase through TWR GestureManager. Since the

gesture is user dependent, it compares the similarity between

the newly captured data with the gesture template stored in the

TWR Gesture-Database.

Figure 3: TWR Architecture.

V.CONCLUSION

In this paper, we are developing an android application named

TWRDROID for managing the permission of the Android

applications. The permission system will change to allow the

user to control an application’s permissions individually to

block apps if desired from having access to the device’s

contacts, calendar, phone, SMS, location, microphone and

camera. And also, we reviewed the TWR (Tap-Wave-Rub)

enhanced permission model, a lightweight permission

enforcement approach for smartphone malware prevention and

detection. Our future effort will be focused on realizing this

approach in practice and further evaluate it with a wide range

of smartphones and smartphone users. Our results will suggest

the proposed approach will be very effective for malware

prevention, with quite low FPR and FNR, while imposing little

to no additional burden on the users.

VI.REFERENCES

[1] Tap-Wave-Rub: Lightweight Human Interaction Approach

to Curb Emerging Smartphone Malware Babins Shrestha, Di

Ma, , Yan Zhu, Haoyu Li, and Nitesh Saxena, in IEEE,2015.

[2] H. Lockheimer, “Android and security,” Google Mobile

Blog, Feb, vol. 2, 2012.

[3] X. Jiang, “An evaluation of the application verification

service in android 4.2, January 2014.”

 International Journal of Contemporary Research in Computer Science and Technology (IJCRCST) e-ISSN: 2395-5325
Volume2, Issue 5 (May ’2016)

IJCRCST © 2016 | All Rights Reserved www.ijcrcst.com 747

[4] W. Enck, M. Ongtang, and P. McDaniel, “Mitigating

Android software misuse before it happens,” 2008.

[5] D. Arp, M. Spreitzenbarth, M. H¨ubner, H. Gascon, K.

Rieck, and C. Siemens, “DREBIN: Effective and Explainable

Detection of Android Malware in Your Pocket,” 2014.

[6] C.-Y. Huang, Y.-T. Tsai, and C.-H. Hsu, “Performance

Evaluation on Permission-Based Detection for Android

Malware,” in Advances in Intelligent Systems and

Applications-Volume 2, pp. 111–120, Springer, 2013.

[7] X. Liu and J. Liu, “A Two-Layered Permission-Based

Android Malware Detection Scheme,” in Mobile Cloud

Computing, Services, and Engineering (MobileCloud), 2014

2nd IEEE International Conference on, pp. 142–148, IEEE,

2014.

[8] B. Sanz, I. Santos, C. Laorden, X. Ugarte-Pedrero, P. G.

Bringas, and G. A´ lvarez, “Puma: Permission usage to detect

malware in android,” in International Joint Conference

CISIS12-ICEUTE´ 12-SOCO´ 12 Special Sessions, pp. 289–

298, Springer, 2013.

[9] B. Sanz, I. Santos, C. Laorden, X. Ugarte-Pedrero, J.

Nieves, P. G. Bringas, and G. A´ lvarezMaran˜o´n, “MAMA:

Manifest Analysis for Malware Detection in Android,”

Cybernetics and Systems, vol. 44, no. 6-7, pp. 469–488, 2013.

[10] Y. Zhou and X. Jiang, “Dissecting android malware:

Characterization and evolution,” in Security and Privacy (SP),

2012 IEEE Symposium on, pp. 95–109, IEEE, 2012.

[11] M. Frank, B. Dong, A. P. Felt, and D. Song, “Mining

Permission Request Patterns from Android and Facebook

Applications,” in ICDM, pp. 870–875, 2012.

[12] A. P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and D.

Wagner, “Android permissions: User attention, comprehension,

and behavior,” in Proceedings of the Eighth Symposium on

Usable Privacy and Security, p. 3, ACM, 2012.

[13] P. G. Kelley, S. Consolvo, L. F. Cranor, J. Jung, N. Sadeh,

and D. Wetherall, “A conundrum of permissions: installing

applications on an android smartphone,” in Financial

Cryptography and Data Security, pp. 68–79, Springer, 2012.

[14] F. Tchakount´e, P. Dayang, J. M. Nlong, and N. Check,

“Understanding of the Behaviour of Android Smartphone Users

in Cameroon: Application of the Security,”

