
 International Journal of Contemporary Research in Computer Science and Technology (IJCRCST) e-ISSN: 2395-5325
Volume2, Issue 5 (May ’2016)

IJCRCST © 2016 | All Rights Reserved www.ijcrcst.com
761

DISTRIBUTED DE-DUPLICATION SYSTEM: MORE SECURE AND
RELIABLE APPROACH

Sagar G. Khengat,

Department Of Computer Engineering,
ISB&M School Of Technology,

Pune, India.

Alok Y. Shukla,
Department Of Computer Engineering,

ISB&M School Of Technology,
Pune, India.

Swapnil S. belorkar,
Department Of Computer Engineering,

ISB&M School Of Technology,
Pune, India.

Prof. Shital D. Bachpalle,

Assistant Professor,
Department Of Computer Engineering,

ISB&M School Of Technology,
Pune, India.

Abstract: Data de-duplication is a technique for eliminating duplicate copies of data, and has been widely used in
cloud storage to reduce storage space and upload bandwidth. However, there is only one copy for each file stored in
cloud even if such a file is owned by a huge number of users. As a result, de-duplication system improves storage
utilization while reducing reliability. Furthermore, the challenge of privacy for sensitive data also arises when they
are outsourced by users to cloud. Aiming to address the abovesecurity challenges, this paper makes the first attempt
to formalize the notion of distributed reliable de-duplication system. We propose new distributed de-duplication
systems with higher reliability in which the data chunks are distributed across multiple cloud servers. The security
requirements of data confidentiality and tag consistency are also achieved by introducing a deterministic secret
sharing scheme in distributed storage systems, instead of using convergent encryption as in previous de-duplication
systems. Security analysis demonstrates that our de-duplication systems are secure in terms of the definitions
specified in the proposed security model. As a proof of concept, we implement the proposed systems and
demonstrate that the incurred overhead is very limited in realistic environments.

Keywords: De-duplication, distributed storage system, reliability, secret sharing

I. INTRODUCTION
In this paper, we show how to design secure de-duplication

systems with higher reliability in cloud computing. We

introduce the distributed cloud storage servers into de-

duplication systems to provide better fault tolerance. To

further protect data confidentiality, the secret sharing

technique is utilized, which is also compatible with the

distributed storage systems. In more details, a file is first split

and encoded into fragments by using the technique of secret

sharing, instead of encryption mechanisms.These shares will

be distributed across multiple independent storage servers.

Furthermore, to supportde-duplication, a short cryptographic

hash value of the content will also be computed and sent to

each storage server as the fingerprint of the fragment stored at

each server. Only the data owner who first uploads the data is

required to compute and distribute such secret shares, while all

following users who own the same data copy do not need to

compute and store these shares any more. To recover data

copies, users must access a minimum number of storage

servers through authentication and obtain the secret shares to

reconstruct the data. In other words, the secret shares of data

will only be accessible by the authorized users who own the

corresponding data copy.

A. Brief Description
With the explosive growth of digital data, de-duplication

techniques are widely employed to backup data and minimize

network and storage overhead by detecting and eliminating

redundancy among data. Instead of keeping multiple data

copies with the same content, de-duplication eliminates

redundant data by keeping only one physical copy and

referring other redundant data to that copy. De-duplication has

received much attention from both academia and industry

because it can greatly improves storage utilization and save

storage space, especially for the applications with high de-

duplication ratio such as archival storage systems.

There are two types of de-duplication in terms of the size:

a) file-level de-duplication, which discovers

redundancies between different files and removes these

redundancies to reduce capacity demands, and

b) block-level de-duplication, which discovers and

removes redundancies between data blocks. The file can be

divided into smaller fixed-size or variable-size blocks. Using

fixed size blocks simplifies the computations of block

boundaries, while using variable-size blocks (e.g., based on

Rabin fingerprinting) provides better de-duplication

efficiency.

Though de-duplication technique can save the storage space

for the cloud storage service providers, it reduces the

reliability of the system. Data reliability is actually a very

critical issue in a de-duplication storage system because there

is only one copy for each file stored in the server shared by all

the owners. If such a shared file/chunk was lost, a

 International Journal of Contemporary Research in Computer Science and Technology (IJCRCST) e-ISSN: 2395-5325
Volume2, Issue 5 (May ’2016)

IJCRCST © 2016 | All Rights Reserved www.ijcrcst.com
762

disproportionately large amount of data becomes inaccessible

because of the unavailability of all the files that share this

file/chunk. If the value of a chunk were measured in terms of

the amount of file data that would be lost in case of losing a

single chunk, then the amount of user data lost when a chunk

in the storage system is corrupted grows with the number of

the commonality of the chunk. Thus, how to guarantee high

data reliability in de-duplication system is a critical problem.

Most of the previous de-duplication systems have only been

considered in a single-server setting. However, as lots of de-

duplication systems and cloud storage systems are intended by

users and applications for higher reliability, especially in

archival storage systems where data are critical and should be

preserved over long time periods. This requires that the de-

duplication storage systems provide reliability comparable to

other high-available systems.

Furthermore, the challenge for data privacy also arises as more

and more sensitive data are being outsourced by users to

cloud. Encryption mechanisms have usually been utilized to

protect the confidentiality before outsourcing data into cloud.

Most commercial storage service providers are reluctant to

apply encryption over the data because it makes de-duplication

impossible. The reason is that the traditional encryption

mechanisms, including public key encryption and symmetric

key encryption, require different users to encrypt their data

with their own keys. As a result, identical data copies of

different users will lead to different ciphertexts. To solve the

problems of confidentiality and de-duplication, the notion of

convergent encryption has been proposed and widely adopted

to enforce data confidentiality while realizing de-duplication.

However, these systems achieved confidentiality of outsourced

data at the cost of decreased error resilience. Therefore, how to

protect both confidentiality and reliability while achieving de-

duplication in a cloud storage system is still a

challenge.intended for environments where shoulder-surfing is

a serious threat.

II. THE METHOD OF PROGRESS AND

ALGORITHM

A. Data De-Duplication
Data de-duplication involves finding and removing duplication

within data without compromising its fidelity or integrity. The

goal is to store more data in less space by segmenting files into

small variable-sized chunks (32–128 KB), identifying

duplicate chunks, and maintaining a single copy of each

chunk. Redundant copies of the chunk are replaced by a

reference to the single copy. The chunks are compressed and

then organized into special container files in the System

Volume Information folder. After de-duplication, files are no

longer stored as independent streams of data, and they are

replaced with stubs that point to data blocks that are stored

within a common chunk store. Because these files share

blocks, those blocks are only stored once, which reduces the

disk space needed to store all files. During file access, the

correct blocks are transparently assembled to serve the data

without calling the application or the user having any

knowledge of the on-disk transformation to the file. This

enables administrators to apply de-duplication to files without

having to worry about any change in behaviour to the

applications or impact to users who are accessing those files.

After a volume is enabled for de-duplication and the data is

optimized, the volume contains the following:

 Unoptimized files. For example, unoptimized files

could include files that do not meet the selected file-

age policy setting, system state files, alternate data

streams, encrypted files, files with extended

attributes, files smaller than 32 KB, other reparse

point files, or files in use by other applications (the

―in use‖ limit is removed in Windows Server 2012

R2).

 Optimized files. Files that are stored as reparse

points that contain pointers to a map of the respective

chunks in the chunk store that are needed to restore

the file when it is requested.

 Chunk store. Location for the optimized file data.

 Additional free space. The optimized files and

chunk store occupy much less space than they did

prior to optimization.

B. Distributed de-duplication systems
The distributed systems’ proposed aim is to reliably store data

in the cloud while achieving confidentiality and integrity. Its

main goal is to enable and distributed storage of the data

across multiple storage servers. Instead of encrypting the data

to keep the confidentiality of the data, our new constructions

utilize the secret splitting technique to split data into shards.

These shards will then be distributed across multiple storage

servers.

C. Building Blocks Secret Sharing Scheme.
There are two algorithms in a secret sharing scheme, which are

Share and Recover. The secret is divided and shared by using

Share. With enough shares, the secret can be extracted and

recovered with the algorithm of Recover. In our

implementation, we will use the Ramp secret sharing scheme

(RSSS) ,[8] to secretly split a secret into shards. Specifically,

the (n, k, r)-RSSS (where n > k > r ≥ 0) generates n shares

from a secret so that (i) the secret can be recovered from any k

or more shares, and (ii) no information about the secret can be

deduced from any r or less shares. Two algorithms, Share and

Recover, are defined in the (n, k, r)-RSSS.

• Share divides a secret S into (k −r) pieces of equal size,

generates r random pieces of the same size, and encodes the k

pieces using a non-systematic k-of-n erasure code into n shares

of the same size;

• Recover takes any k out of n shares as inputs and then

outputs the original secret S. It is known that when r = 0, the

(n, k, 0)-RSSS becomes the (n, k) Rabin’s Information

Dispersal Algorithm (IDA) [9]. When r = k−1, the (n, k, k−1)-

RSSS becomes the (n,k) Shamir’s Secret Sharing Scheme

(SSSS).

D. The File-level Distributed De-duplication System

To support efficient duplicate check, tags for each file will be

computed and are sent to S-CSPs. To prevent a collusion

attack launched by the S-CSPs, the tags stored at different

storage servers are computationally independent and different.

We now elaborate on the details of the construction as follows.

System setup. In our construction, the number of storage

servers S-CSPs is assumed to be n with identities denoted by

id1, id2, · · · ,idn, respectively. Define the security parameter

 International Journal of Contemporary Research in Computer Science and Technology (IJCRCST) e-ISSN: 2395-5325
Volume2, Issue 5 (May ’2016)

IJCRCST © 2016 | All Rights Reserved www.ijcrcst.com
763

as 1_ and initialize a secret sharing scheme SS = (Share,

Recover), and a tag generation algorithm TagGen. The file

storage system for the storage server is set to be. File Upload.

To upload a file F, the user interacts with S-CSPs to perform

the de-duplication. More precisely, the user firstly computes

and sends the file tag ϕF= TagGen(F) to S-CSPs for the file

duplicate check.

• If a duplicate is found, the user computes and sends ϕF;idj=

TagGen′(F, idj) to the j-th server with identity idjvia the secure

channel for 1 ≤ j ≤ n (which could be implemented by a

cryptographic hash function Hj(F) related with index j). The

reason for introducing an index j is to prevent the server from

getting the shares of other S-CSPs for the same file or block,

which will be explained in detail in the security analysis. If

ϕF;idjmatches the metadata stored with ϕF, the user will be

provided a pointer for the shard stored at server idj.

• Otherwise, if no duplicate is found, the user will proceed as

follows. He runs the secret sharing algorithm SS over F to get

{cj} = Share(F), where cjis the j-th shard of F. He also

computes ϕF;idj= TagGen′(F, idj), which serves as the tag for

the jth S-CSP. Finally, the user uploads the set of values

{ϕF,cj, ϕF;idj} to the S-CSP with identity idjvia a secure

channel. The S-CSP stores these values and returns a pointer

back to the user for local storage.

File Download. To download a file F, the user first downloads

the secret shares {cj} of the file from k out of n storage servers.

Specifically, the user sends the pointer of F to k out of nS-

CSPs. After gathering enough shares, the user reconstructs file

F by using the algorithm of Recover({cj}). This approach

provides fault tolerance and allows the user to remain

accessible even if any limited subsets of storage servers fail.

E. The Block-level Distributed System
In this section, we show how to achieve the fine-grained

block-level distributed de-duplication. In a block-level de-

duplication system, the user also needs to firstly perform the

file-level de-duplication before uploading his file. If no

duplicate is found, the user divides this file into blocks and

performs block-level de-duplication. The system setup is the

same as the file-level de-duplication system, except the block

size parameter will be defined additionally. Next, we give the

details of the algorithms of File Upload and File Download.

File Upload. To upload a file F, the user first performs the

file-level de-duplication by sending ϕFto the storage servers.

If a duplicate is found, the user will perform the file-level de-

duplication. Otherwise, if no duplicate is found, the user

performs the block-level de-duplication as follows. He firstly

divides F into a set of fragments {Bi} (where i = 1, 2, · · ·). For

each fragment Bi, the user will perform a block-level duplicate

check by computing ϕBi= TagGen(Bi), where the data

processing and duplicate check of block-level de-duplication is

the same as that of file-level de-duplication if the file F is

replaced with block Bi. Upon receiving block tags {ϕBi}, the

server with identity idjcomputes a block signal vector σBifor

each i

i) If σBi=1, the user further computes and sends ϕBi;j=

TagGen′(Bi, j) to the S-CSP with identity idj. If it also matches

the corresponding tag stored, S-CSP returns a block pointer of

Bi to the user. Then, the user keeps the block pointer of Bi and

does not need to upload Bi.

 ii) If σBi=0, the user runs the secret sharing algorithm SS over

Bi and gets {cij} = Share(Bi), where cijis the j-th secret share

of Bi. The user also computes ϕBi;jfor 1 ≤ j ≤ n and uploads

the set of values {ϕF, ϕF;idj, cij, ϕBi;j} to the server idjvia a

secure channel. The S-CSP returns the corresponding pointers

back to the user.

File Download. To download a file F = {Bi}, the user first

downloads the secret shares {cij} of all the blocks Bi in F from

k out of nS-CSPs. Specifically, the user sends all the pointers

for Bi to k out of n servers. After gathering all the shares, the

user reconstructs all the fragments Bi using the algorithm of

Recover({·}) and gets the file F = {Bi}.

F. Algorithm-

Step 1- Cloud auditor server generate a random set challenge

request

Step 2- Cloud storage auditor compute and generate integrity

proof.

Step 3- cloud auditor server compute R from

Step 4- Cloud auditor server Verify signature of R output

False then abort if not true.

Step 5-cloud auditor server Verify integrity of output true or

false.

III. MATHEMATICAL MODEL
Let S be the Whole system which consists,

S= {I,P,O}

Where,

I-Input,

P- procedure,

O- Output.

I-{F,U}

F-Files set of {F1, F2,…., FN}

U- No of Users {U1, U2,……,UN}

A. Procedure(P):
P={POW, n , , , ,ɸ i,j ,m , k}.

Where,

1. POW - proof of ownership.

2. n - No of servers.

3. proof of ownership in blocks.

4. – proof of ownership in files

5. ɸ- tag.

6. i- Fragmentation.

7. j- No of server.

8. m-message

9. k- Key.

B. File Upload(FU):

Step 1: File level de-duplication

If a file duplicate is found, the user will run the PoW protocol

POWF with each S-CSP to prove the file ownership.for the j-

th server with identity idj, the user first computes

ϕF;idj= TagGen′(F, idj)

and runs the PoW proof algorithm with respect to ϕF, idj. If

the proof is passed,the user will be provided a pointer for the

piece of file stored at j-th S-CSP. Otherwise, if no duplicate is

found, the user will proceed as follows:

 International Journal of Contemporary Research in Computer Science and Technology (IJCRCST) e-ISSN: 2395-5325
Volume2, Issue 5 (May ’2016)

IJCRCST © 2016 | All Rights Reserved www.ijcrcst.com
764

First divides F into a set of fragments {Bi} (where i = 1, 2, · · ·

). For each fragment Bi, the user will perform a block-level

duplicate check.

Step 2: Block Level de-duplication

If there is a duplicate in S-CSP, the user runs PoWBon input:

ϕBi;j= TagGen′(Bi, idj)

with the server toprove that he owns the block Bi. If it is

passed, the server simply returns a block pointer of Bi to

theuser. The user then keeps the block pointer of Bi and does

not need to upload Bi.

C. Proof of ownership(POW):

Step 1: compute and send ϕ ′ to the verifier.

Step 2: present proof to the storage server that he owns F in an

interactive way with respect to ϕ ′ The PoW is successful if the

proof is correct

ϕ ′ = ϕ(F)

D. File Download(FD)-

To download a file F, the user firstdownloads the secret shares

{cij,mfj} of the file from kout of n storage servers. Specifically,

the user sends all the pointers for F to k out of n servers. After

gatheringall the shares, the user reconstructs file F, macFby

using the algorithm of Recover({·}). Then, he verifies the

correctness of these tags to check the integrity of

the file stored in S-CSPs.

E. Output(O):

User can upload, download, recover, share files on cloud

server and provide data de-duplication and reliability.

IV. ADVANTAGES OF SYSTEM
1) File-level De-duplication

2) Block-level De-duplication

3) Improved reliability by distributed deduplication

V. SYSTEM ARCHITECTURE
In following figure we design a system which is useful for

preventing data de-duplication with improved reliability.

Figure1. Distributed De-duplication System

VI. CONCLUSION
We concentrated on the issue of evaluating if an untrusted

server stores a customer's data. We presented a model for

provable data possession (PDP), in which it is alluring to

minimize the file piece gets to, the calculation on the server,

and the client–server correspondence. Our answers for PDP fit

this model: They cause a low (or even steady) overhead at the

server and oblige a little, consistent measure of

correspondence per challenge. Key parts of our plans are the

backing for spot checking, which guarantees that the plans

stay light weight, and the homomorphic verifiable labels,

which permit to confirm data possession without having entry

to the genuine data file. We likewise define the idea of hearty

inspecting, which coordinates remote data checking (RDC)

with for-ward mistake amending codes to moderate

discretionarily little file debasements and propose a

nonspecific change for adding vigor to any spot checking-

based RDC plan. Examinations demonstrate that our plans

make it down to earth to check possession of vast data sets.

Past plans that don't permit testing are not commonsense when

PDP is utilized to demonstrate possession of a lot of data, as

they force a significant I/O and computational weigh on the

server.

VII. REFERENCES
[1] J. R. Douceur, A. Adya, W. J. Bolosky, D. Simon, and M.

Theimer, ―Reclaiming space from duplicate files in a

serverless distributed file system.‖ in ICDCS, 2002, pp. 617–

624.

[2] M. Bellare, S. Keelveedhi, and T. Ristenpart, ―Dupless:

Serveraided encryption for de-duplicated storage,‖ in USENIX

Security Symposium, 2013.

[3] ——, ―Message-locked encryption and secure

deduplication,‖ in EUROCRYPT, 2013, pp. 296–312.

[4] S. Halevi, D. Harnik, B. Pinkas, and A. Shulman-Peleg,

―Proofs of ownership in remote storage systems.‖ in ACM

Conference on Computer and Communications Security, Y.

Chen, G. Danezis, andV. Shmatikov, Eds. ACM, 2011, pp.

491–500.

[5] J. S. Plank and L. Xu, ―Optimizing Cauchy Reed-solomon

Codes for fault-tolerant network storage applications,‖ in

NCA-06: 5
th

 IEEE International Symposium on Network

Computing Applications, Cambridge, MA, July 2006.

[6] P. Anderson and L. Zhang, ―Fast and secure laptop

backups with encrypted de-duplication,‖ in Proc. of USENIX

LISA, 2010

[7] J. Stanek, A. Sorniotti, E. Androulaki, and L. Kencl, ―A

secure data de-duplication scheme for cloud storage,‖ in

Technical Report, 2013.

[8] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner,

Z. Peterson, and D. Song, ―Provable data possession at

untrusted stores,‖ in Proceedings of the 14th ACM conference

on Computer and communications security, ser. CCS ’07. New

York, NY, USA: ACM, 2007, pp. 598–609.

 International Journal of Contemporary Research in Computer Science and Technology (IJCRCST) e-ISSN: 2395-5325
Volume2, Issue 5 (May ’2016)

IJCRCST © 2016 | All Rights Reserved www.ijcrcst.com
765

[Online].Available:http://doi.acm.org/10.1145/1315245.13153

18

[9] R. D. Pietro and A. Sorniotti, ―Boosting efficiency and

security in proof of ownership for de-duplication.‖ in ACM

Symposium on Information, Computer and Communications

Security, H. Y. Youm and Y. Won, Eds. ACM, 2012, pp. 81–

82.

[10] W. K. Ng, Y. Wen, and H. Zhu, ―Private data de-

duplication protocols in cloud storage.‖ in Proceedings of the

27th Annual ACM Symposium on Applied Computing, S.

Ossowski and P. Lecca, Eds. ACM, 2012, pp. 441–446.

http://doi.acm.org/10.1145/1315245.1315318
http://doi.acm.org/10.1145/1315245.1315318
http://doi.acm.org/10.1145/1315245.1315318

