
 International Journal of Contemporary Research in Computer Science and Technology (IJCRCST) e-ISSN: 2395-5325
Volume 2, Issue 10 (October ’2016)

 IJCRCST © 2016 | All Rights Reserved www.ijcrcst.com

1042

AN ANALYSIS ON THE INITIATIVES OF COGNITIVE COMPLEXITY
METRICS IN OBJECT – ORIENTED PROGRAMMING: A SURVEY

N. Vijayaraj,
Assistant Professor,

Department of Computer Science,
Srimad Andavan Arts and Science College,

Trichy, Tamilnadu, India.

T.N.Ravi,
Assistant Professor,

Department of Computer Science,
Periyar E.V.R. College,

Trichy,Tamilnadu,India.

Abstract: The primary goal of software metric is to evaluate the quality of built software. The conventional software
metrics are majorly categorized into procedure and object oriented. Despite the emergence of newer technologies,
object oriented (OO) software programming are said to be evolutionary as they are widely used in software design
and development in the recent era. Though there have been many efforts made in developing software metrics for
OO programming, the real time implementation of those metrics is still seem to be diminutive. Software Cognitive
complexity metrics are yet another newer dimension of software metrics which are known to be simple and ready to
implement in various domains. The core objective of this paper is to analyze the usability and maintainability of
software cognitive complexity metrics in software industries.

Keywords: Software metrics, OO programming, Maintainability, Usability, Cognitive, Complexity

I.INTRODUCTION

Quantitative measures are indeed essential for all scientific

inventions as it acts as a justifying factor of the novelty of

any research work. Software metric is a quantitative measure

of quality of software. There have been continuous efforts

made by computer science practitioners and researchers to

propose numerous software metrics that can be used in the

development stage of software with the objective of assessing

them with quantifiable scales. The result of software metrics

ensures the hidden characteristics of software such as

complexity, maintainability, modifiability and reusability. The

benefits of software metrics are also extended to evaluate the

cost required for testing, debugging and performance

optimization.

Software complexity metrics are one of the vital

classifications of software metrics that encompasses the

measures for quantifying the complexity involved in the

software code. Hence, the research on software complexity

metrics has always been considered as thrust area in research.

The three important attributes of software complexity metrics

are essential, selection and incidental [1]. The essential

software complexity metrics focuses on the problems that the

software tries to solve, the selecting software complexity

metrics focuses on the problems involved in the software

models and design and finally, the incidental software

complexity metrics focuses on the improvement of software

quality.

OO programming is the most popular and widely used

software development programming over the past three

decades. The ease of implementation, modifiability,

maintenance, understandability and the ability to reuse

software code and modules makes the OO programming as

standalone and let the developers to opt for. Software

complexity metrics in OO programming refers to the

complexity of software code with respect to

understandability, modifiability, maintainability and

reusability. According to Abbot the complexity of a function

is the criticality of interactions between the classes, methods

and attributes that increases the time taken for the above

mentioned activities on the software. Software cognitive

complexity metrics are another invention of software metrics

that are proposed for the purpose of measuring the code

complexity with cognitive characteristics approach. Software

cognitive complexity metrics for methods are still under the

scope of research which is yet to be improved in software

engineering. The objective of this paper is to survey the

researches that have been initiated on cognitive complexity

metrics their merits and demerits there by identifying the

different cognitive approaches that can be helpful in the

betterment of software engineering.

The remaining section of the paper is organized as follows:

Section 2 describes the existing cognitive complexity metrics

and finally section 3 concludes the findings of the survey.

II.COGNITIVE COMPLEXITY METRICS

Misra et al. [2] have proposed a family of cognitive metrics

for evaluating the method, message and attributes

complexities involved in OO Codes. The authors have also

proposed a code complexity metric by considering the

complexity with inheritance. The authors have used the

cognitive aspect of code in terms of assigning weight. The

metrics are described as follows:

Method Complexity (MC):

MC is computed by assigning the cognitive weights of

structures that exists in a method of a class. The weights of

the cognitive complexity are measured by the logical and

control structures that are resided in methods of software. The

logical structures are weighed as one, two, three and two

corresponding to sequence, branch, iteration and call

respectively. The MC is calculated by associating the weight

 International Journal of Contemporary Research in Computer Science and Technology (IJCRCST) e-ISSN: 2395-5325
Volume 2, Issue 10 (October ’2016)

 IJCRCST © 2016 | All Rights Reserved www.ijcrcst.com

1043

with each method of a class and adds the overall weights to

attain the cumulative results which can be formulated as

shown in equation 1.

MC=∑
i= 1

m

[∏
j = 1

n

∑
k= 1

o

W c(i , j , k)]

 … (1)

Where Wc refers to the cognitive weights of control

structures. The sum of cognitive weights of „m‟ linear blocks

within the individual control structures is defined as the

method complexity of a class.

Message Complexity (Coupling Weight for a Class

(CWC)):

Two classes are said to be coupled if and only if there exist a

message call from one class to the other. CWC adds the

weights of internal and external message calls to CWC, rather

than counting the total number of calls. Here, the

complexities due to message calls are assessed by summing

the weights of call and the weights of called methods, which

can be formulated as shown in equation 2.

CWC=∑
i= 1

n

(2+MC i)

 … (2)

Where, the number 2 is the weight of message to an external

method and MCi is the weight of called method. If the

number of external calls is „n‟, then CWC is computed as

sum of weights of all message calls.

Attribute Complexity (AC):

AC is designed with the principle that the complexity of a

class is high, if it contains more number of attributes. The

attributes that instantiates an object used in one method may

not be used in other methods increases the complexity of a

class. The weight of AC is the total number of attributes

associated in the class which can be denoted as shown in

equation 3.

AC=∑
j= 1

n

1,

 … (3)

Where „n‟ is the total number of attributes in the class.

Weighted Class Complexity (WCC):

The structure of OO programming purely depends upon

classes and objects whose elements are methods and

attributes. The complexity of the class is measured by the

number of attributes and the methods that exists in the class.

Hence, the WCC of a class is the sum of attribute weights and

method weights of the corresponding class. The formula for

calculating the WCC is denoted as shown in equation 4.

WCC= AC+∑
j=1

n

MC j

 … (4)

Where WCC is the sum of attribute complexity and sum of all

the method complexities of class.

Code Complexity (CC):

The complexity of the individual modules does not represent

the complexity of the entire software. In order to measure the

complexity involved in the whole software, there is need for

understanding the relationship between the modules. Thus,

CC emphasizes on the concepts of inheritance property as the

classes of a module may either be parents or children classes.

For instance, a child class may inherit the properties of its

parent classes. With this principle the CC of the entire

software is defined as

 If classes are of same level, add the weights

 If classes are sub or child classes, multiply the

weights

If there are „m‟ levels of depth in the object-oriented code and

level j has n classes then the Code Complexity (CC) of the

system is given by equation 4.

CC=∏
i= 1

n

[∑
j= 1

m

WCC jk]

 … (5)

Aloysius et al. [3] have proposed a cognitive complexity

metric suite such as Attribute Weighted Class Complexity

(AWCC), Cognitive Weighted Response For a Class

(CWRFC) and Cognitive Weighted Coupling Between

Objects (CWCBO) for measuring cognitive complexity

arising due to inheritance, message passing and coupling

respectively.

Attribute Weighted Class Complexity (AWCC):

The complexity of a class with AWCC is calculated using the

method and attribute complexities with the complexity of the

inherited members. Supposing, if a class holds „m‟ attributes

and „n‟ methods and the class is derived from „o‟ number of

classes then, the AWCC of the corresponding class can be

calculated as shown in equation 6.

AWCC=∑
x= 1

m

AC x+∑
y= 1

n

MC y+∑
z= 1

o

ICC x

 … (6)

Where, AC is the attribute complexity

MC is the method complexity

ICC is the inherited class complexity

The attribute complexity of CWCBO is the sum of

multiplication of data type weights with the number of

attributes belonging to the data type, which can be denoted

using the formula denoted as equation 7.

AC= (PDT ∗ W p)+(DDT ∗ W d)+(UDDT ∗ Wu)

 … (7)

Where, PDT is the number of attributes belonging to primary

data type

DDT is the number of attributes belonging to derived data

type

UDDT is the number of attributes belonging to user-defined

data type

Wp is the weight for PDT which is 1

Wd is the weight for DDT which is 2

Wu is the weight for UDDT which is 3

The MC is calculated as defined by Misra et al. and ICC

The formula for calculating the ICC is denoted in equation 8.

 International Journal of Contemporary Research in Computer Science and Technology (IJCRCST) e-ISSN: 2395-5325
Volume 2, Issue 10 (October ’2016)

 IJCRCST © 2016 | All Rights Reserved www.ijcrcst.com

1044

ICC= (DIT ×CL)×∑
e= 1

s

RMC e+RNA

 … (8)

Where DIT denotes the depth inheritance Tree metric

CL is the cognitive Load of level L

S is the number of inherited method s

RNA is the total number of reused attributes

RMC is the reused method complexity

IC is the inherited complexity

Cognitive Weighted Response For a Class (CWRFC)

CWRFC metric is used for measuring the complexity

involved in message passing [4]. Supposing if a class holds

„n‟ number of response sets CWRFC calculates the

complexity of the class using the response set complexity as

shown in equation 9.

CWRFC=∑
i= 1

n

RSC i

 … (9)

Where RSC denotes the response set complexity, which is

calculated by summing the set of all m methods in a class and

set of R methods called by any of those methods.

RSC= ∀i Ri+M

 … (10)

As per message passing, the methods of the classes are

segmented into two as, Methods With Arguments (MWA) and

methods without arguments (MOA). MOA is also referred as

Default Function (DF). The arguments of MWA can either be

passed through Pass By Value (PBV) or Pass By Reference

(PBR). Hence, R can be computed using the formula shown

in equation 11.

R= DF ×(CW f +WFd)+PBV ×(CW f +WFv)+PB ×(CW f +WFr)
 … (11)

Where, DF is the total number of default functions

PBV is the total number of Pass By Value Function Call

Statements

PBR is the total number of Pass By Reference Function Call

Statements

CWf is the CWs of the Function Call Statement

WFd is the Weighting Factor of the DFCS

WFv is the Weighting Factor of the PBV statements

WFr is the Weighting Factor of the PBR statements

Cognitive Weighted Coupling Between Objects (CWCBO)

The motivation for defining CWCBO metric is to elucidate

the complexity involved with coupling of classes by

considering the different types of coupling such as control,

data, interface and global couplings [5]. The unnecessary

object coupling increases the complexity the chances of

system exploitation. CWCBO can be calculated using the

equation 12.

¿
(CC ×WFCC)+(GDC×WFGDC)+(IDC ×WFIDC)+(DC ×WFDC)+(LCC ×WF LCC)

CWCBO= ¿
 … (12)

Where

CC is the total number of modules that contains Control

Coupling

WFCC is the Weighting Factor of Control Coupling

GDC is the count of Global Data Coupling

WFGDC is the Weighting Factor of Global Data Coupling

and its weight is given as 1

IDC is the count of Internal Data Coupling

WFIDC is the Weighting Factor of Internal Data Coupling

and its weight is given as 2

DC is the count of Data Coupling

WFDC is the Weighting Factor of Data Coupling and its

weight is given as 3

LCC is count of Lexical Content Coupling

WFLCC is the Weighting Factor of Lexical Content Coupling

and its weight is given as 4

Cognitive Weighted Polymorphism Factor (CWPF)

Thamburaj et al. [6] have proposed CWPF. The goal of

CWPF metric is to evaluate the complexity of software with

respect to three types of polymorphisms such as pure, static

and dynamic polymorphisms. The metric calculates the

cognitive complexity arising from the efforts needed to

comprehend the different types of polymorphism involved in

the software rather than calculating only the architectural

complexity of the polymorphism which is shown in equation

13.

CWPF=

∑
i= 1

TC

CWM o(C i)

∑
i= 1

TC

[M n (C i)× DC(C i)]× ACW

 … (13)

Where, CWMo(Ci) is the number of overriding methods in

class Ci

DC(Ci) is the number of children of class Ci

TC is the total number of classes. The calculation of ACW is

done by the equation 14.

ACW= (CWPP+CWSP+CW DP)

 … (14)

CWPP is the cognitive weight of pure polymorphism

CWSP is the cognitive weight of static polymorphism

CWDP is the cognitive weight of dynamic polymorphism

Cognitive Weighted Attribute Hiding Factor (CWAHF)

CWAHF metric enhances cognitive perspective on the

visibility of different types of attributes which are commonly

divided into private, protected and public [7]. Private

arguments are the arguments that are fully invisible, protected

means partially visible and public means fully visible. The

default visibility comes under the package private scope and

does not have any keyword. The equations 15, 16 and 17

denotes the calculation of CWAHF.

CWAHF=

∑
i= 1

TC

Ah (Ci)

∑
i= 1

TC

Ah (Ci)+∑
i= 1

TC

Av(Ci)

 … (15)

 International Journal of Contemporary Research in Computer Science and Technology (IJCRCST) e-ISSN: 2395-5325
Volume 2, Issue 10 (October ’2016)

 IJCRCST © 2016 | All Rights Reserved www.ijcrcst.com

1045

∑
i= 1

TC

Ah(C i)=∑
i= 1

TC

A p(C i)×CW pa+Ad(C i)×CWda+ A t (C i)×CW ta

 … (16)

∑
i= 1

TC

Av(C i)=∑
i=1

TC

Au(C i)×CWua

 … (17)

Ap(Ci) is the number of private arguments

CWpa is the cognitive weight of private arguments

Ad(Ci) is the number of default arguments

CWda is the cognitive weight of default arguments

At(Ci) is the number of protected arguments

CWta is the cognitive weight of protected arguments

Au(Ci) is the number of public arguments

CWua is the cognitive weight public argument

III.CONCLUSION

This survey has discussed the various efforts that are made to

assess the quality of software products in the perspective of

cognitive complexity. All the metrics that are described in the

paper are designed to address the complexities involved in

method, attribute, class, code, inheritance, coupling, message

passing and polymorphism. But, still there are plenty of OO

benefits such as cohesion, modularity, dynamic bindings and

method overloading are yet to be addressed in the cognitive

analysis. Hence, the future direction of this paper focuses on

the development of cognitive complexity metrics for the

remaining benefits of the OO programming to enhance the

quality measurement of software products.

IV.REFERENCES

[1]. Jakhar, Amit Kumar, and Kumar Rajnish. "Measuring

complexity, development time and understandability of

a program: A cognitive approach." International Journal

of Information Technology and Computer Science

(IJITCS) 6, no. 12 (2014): 53.

[2]. Misra, Sanjay, Murat Koyuncu, Marco Crasso, Cristian

Mateos, and Alejandro Zunino. "A suite of cognitive

complexity metrics." In International Conference on

Computational Science and Its Applications, pp. 234-

247. Springer Berlin Heidelberg, 2012.

[3]. Dr. L.Arockia and A.Aloysius, “Attribute Weighted

Class Complexity: A New Metric for Measuring

Cognitive Complexity of OO Systems”, International

Journal of Computer, Electrical, Automation, Control

and Information Engineering Vol:5, No:10, 2011

[4]. Dr. L.Arockia and A.Aloysius, “Maintenance Effort

Prediction Model Using Cognitive Complexity

Metrics”, International Journal of Advanced Research in

Computer Science and Software Engineering, Volume 3,

Issue 11, November 2013.

[5]. Dr. L.Arockia and A.Aloysius, “Coupling Complexity

Metric: A Cognitive Approach”, I.J. Information

Technology and Computer Science, 2012

[6]. T. Francis Thamburaj, A. Aloysius, “Cognitive

Weighted Polymorphism Factor:A Comprehension

Augmented Complexity Metric”, International Journal

of Computer, Electrical, Automation, Control and

Information Engineering Vol:9, No:11, 2015

[7]. T. Francis Thamburaj, A. Aloysius,” Cognitive

Perspective Of Attribute Hiding Factor Complexity

Metric”, International Journal Of Engineering And

Computer Science ISSN: 2319-7242 Volume 4 Issue 11

Nov 2015

[8]. Mel Ó Cinnéide, Laurence Tratt, Experimental

Assessment of Software Metrics Using Automated

Refactoring 2012 ACM

[9]. J. Al Dallal and L. Briand. A precise method-method

interaction-based cohesion metric for object-oriented

classes.ACM Transactions on Software Engineering and

Methodology , 2010.

[10]. J. Al-Dallal and L. C. Briand. An object-oriented high-

level design-based class cohesion metric Information &

Software Technology , 52(12):1346–1361,2010.

[11]. K.K.Aggarwal, Yogesh Singh, software design metrics

for object-oriented software journal of object

technology, Vol. 6, No. 1, January-February 2006

