
 International Journal of Contemporary Research in Computer Science and Technology (IJCRCST) e-ISSN: 2395-5325
Volume 2, Issue 9 (September ’2016)

 IJCRCST © 2016 | All Rights Reserved www.ijcrcst.com

995

CHECKPOINT BASED RECOVERY AWARE COMPONENT SYSTEM IN
GRID COMPUTING

A.Suganthi,

M.Phil Research Scholar (PT),
Department Of Computer Science,

Sangunthar Arts and Science College,
Triuchengode,Tamilnadu,India.

R.Bharathi,
Head cum Assistant Professor,

Department Of Computer Science (PG),
Sangunthar Arts and Science College,

Triuchengode,Tamilnadu,India.

Abstract: Grids are distributed systems that dynamically coordinate a large number of heterogeneous resources to
execute large scale projects involving collaborating teams of scientists, high performance computers, massive data
stores, high bandwidth networking, and/or scientific instruments like telescopes, and synchrotrons. Failure in grids is
arguably inevitable due to the massive scale and the heterogeneity of grid resources, the distribution of these
resources over unreliable networks, the complexity of mechanisms that are needed to integrate such resources into
a seamless utility, and the dynamic nature of the grid infrastructure that allows continuous changes to happen. In
this thesis, we propose the Recovery-Aware Components (RAC) approach. The RAC approach enables a grid
application to tolerate failure reactively and proactively at the level of the smallest and independent execution unit
of the application. The approach also combines runtime prediction with a proactive fault tolerance strategy. By
managing failure at the smallest execution unit, and combining runtime prediction with a proactive fault tolerance
strategy, the RAC approach aims at improving the reliability of the grid application with the least overhead possible.

Keywords: Grid Computing, recovery, fault tolerance, reliability

I.INTRODUCTION
Grid is a type of parallel and distributed system that enables

the sharing, selection, and aggregation of geographically

distributed "autonomous" resources dynamically at runtime

depending on their availability, capability, performance, cost,

and users' quality of service requirements. Grid computing,

most simply stated, is distributed computing taken to the next

evolutionary level. The goal is to create the illusion of a

simple yet large and powerful self-managing virtual computer

out of a large collection of connected heterogeneous systems

sharing various combinations of resources. Grid is a collection

of distributed resources connected by a network, possibly at

different sites and in different organizations. Those resources

may include supercomputers, instruments such as telescopes

and microscopes, computer-controlled factory floor tools,

mid- level servers, desktop machines, laptop etc [1]. A grid

usually connects huge number of computers over the Internet

as a complex computational System. Here numerous tasks are

distributed to grid nodes in decentralized fashion. It contains

five Components [2].Like A portal, A service broker, Task

scheduler, A task manager and A group of grid node. The

portal acts as a user interface, through which user can log in

and use the grid. After having logged into the grid, a user can

submit a task. The service broker will check whether or not

the grid possesses resources suitable for handling the

submitted task. If so, it will further check whether or not the

resources are available now. The task scheduler is responsible

for scheduling submitted tasks to be served. The task manager

finally launches a submitted task. The nodes, as the core of a

grid, are prerequisites. Grid nodes can be desktops,

workstations, and clusters that belong to different LANs,

WANs, or the Internet.

Grid Architecture: In grid computing, many thousands of

small-distributed computing networks would be linked over

worldwide grids in a Web like system resembling a public

utility’s power grid [3]. That will let businesses send data

transfer, share software more easily and store even more

information than today’s computer networks. The

development of Grid-enabled applications presents a

significant challenge, however, because of the high degree of

heterogeneity and dynamic behavior in architecture,

mechanisms, and performance encountered in Grid

environment. The Grid is made up of a number of components

from enabling resources to end user applications. A layered

architecture of the Grid and its components are shown in the

following, Figure 1.

Figure 1: Grid Layer Architecture

Grid computing technologies enable controlled resource

sharing in distributed communities and the coordinated use of

those shared resources as community members tackle common

goals. These technologies include new protocols, services, and

APIs for secure resource access, resource management, fault

detection, communication, and so forth that in term enable

new application concepts such as virtual data, smart

instruments. A computational grid can be modeled using 4-

layer architecture as (1) Grid fabric, (2) Core Grid

Middleware, (3) Grid Tools, and (4) Grid Fabric [4]. Grid

Grid Applications

Grid Tools

Grid Middleware

Grid Fabric

 International Journal of Contemporary Research in Computer Science and Technology (IJCRCST) e-ISSN: 2395-5325
Volume 2, Issue 9 (September ’2016)

 IJCRCST © 2016 | All Rights Reserved www.ijcrcst.com

996

Fabric is consists of all the globally distributed resources that

are accessible from anywhere on the Internet. These resources

could be computers (such as PCs, SMPs, clusters) running a

variety of operating systems (such as UNIX or Windows) as

well as resource management systems such as LSF (Load

Sharing Facility), Condor, PBS (Portable Batch System) or

SGE (Sun Grid Engine), storage devices, databases, and

special scientific instruments such as a radio telescope or

particular heat sensor. Core Grid Middleware offers core

services such as remote process management, coallocation of

resources, storage access, information registration and

discovery, security and aspects of Quality of Service (QOS)

such as resource reservation and trading. Grid Tools (User-

Level Grid Middleware) includes application development

environments, programming tools, and resource brokers for

managing resources and scheduling application tasks for

execution on global resources. Grid Applications consists of

Grid applications or portals. Grid applications are typically

developed using Grid-enabled languages and utilities such as

MPI (message passing interface) or Nimrod parameter

specification language. An example application, such as

parameter simulation or grand-challenge problem would

require computational powers, access to remote data sets, and

may need to interact with scientific instruments. Grid portals

offer Web-enabled application services, where the users can

submit and collect results for their jobs on remote resources

through the Web.

 II.LITERATURE REVIEW

Kumar-et al [5] proposed a non-blocking checkpointing

algorithm based on keeping track of direct dependencies of

processes. Each process maintains a direct dependency vector.

In their scheme, initiator process collects the direct

dependency vectors of all processes, computes minimum set,

and sends the checkpoint request along with the minimum set

to relevant processes. This reduces the time to take the

checkpoints. If new dependencies are created during

checkpointing process, those are updated and updated

minimum set is formed.

Wang and Fuchs [6] proposed a coordinated checkpointing

scheme in which they incorporated the technique of lazy

checkpoint coordination into an uncoordinated checkpointing

protocol for bounding rollback propagation Recovery line

progression is made by performing communication induced

checkpoint coordination only when predetermined consistency

criterion is violated. The notation of laziness provides a trade

off between extra checkpoints during normal execution and

average rollback distance for recovery.

L K Awasthi-Kumar [7] proposed a minimum process

coordinated checkpointing protocol for mobile distributed

systems. Where the number of useless checkpoint and the

blocking of processes are reduced using the probabilistic

approach and by computing the tentative minimum set in the

beginning. This algorithm is the first one to combine and non-

blocking scheme in one algorithm.

Gupta et al. [8] proposed a single phase nonblocking

coordinated checkpointing approach for mobile computing

environment. In their algorithm, the processes are allowed to

take the permanent checkpoints directly without taking

tentative checkpoints and whenever a process is busy, the

process takes a checkpoint after the completion of current

procedure. However, this scheme has the disadvantage that it

does consider the case of failure during the checkpointing

operation which may result in the inconsistent states of the

processes.

Koo-Toueg's et al.[9] proposed a minimum process blocking

checkpointing algorithm for distributed systems. The

algorithm consists of two phases. During the first phase, the

checkpoint initiator identifies all resources with which it has

communicated since the last checkpoint and sends them a

request. Upon receiving the request, each resource in turn

identifies all resource it has communicated with since the last

checkpoint and sends them a request, and so on, until no more

resource can be identified. During the second phase, all

resource identified in the first phase take a checkpoint.

Silva L et al. [10] proposed Global checkpointing for all

process in distributed systems. It is achieved by piggybacking

monotonically increasing checkpoint number along with

computational message. When a process receives a

computational message with the high checkpoint number, it

consider that checkpoint before processing the message. If

each process allowed to initiate the checkpoint operation, the

network may be flooded with control messages and

unnecessary checkpoints. In order to avoid this, the proposed

event allows one process to initiate checkpointing. The

checkpoint event changes periodically by a local timer

mechanism. When this timer expires, the initiator process

broadcast checkpoint message to all other process.

J.L. Kim et al.[11] developed a new efficient synchronized

checkpointing protocol which exploits the dependencies

between processes in distributed systems. In this protocol, a

process takes a checkpoint where all other processes agrees for

same checkpoint and hence the process need not always wait

for the decision made by the checkpointing coordinator as they

are conventional synchronized protocols.

Prakash-Singhal et al.[12] proposed low-level checkpointing

algorithm was to combine two approaches. More specifically,

it forces only a minimum number of processes to take

checkpoints and does not block the underlying computation

during checkpointing. It forces only part of processes to take

checkpoints, the carrier sense of some processes may be out-

of-date, and may not be able to avoid inconsistencies.

Therefore this algorithm attempts to solve this problem by

having each process maintains an array to save the problem.

Chandy et al.[13] proposed a global snapshot algorithm for

distributed systems. It is observed that every checkpointing

algorithm proposed for message passing system. The global

state is constructed by coordinating all the resources and

logging the channel state at the time of checkpointing. Special

messages called markers are used for coordination and for

identifying the messages originating at different checkpointing

intervals.

 International Journal of Contemporary Research in Computer Science and Technology (IJCRCST) e-ISSN: 2395-5325
Volume 2, Issue 9 (September ’2016)

 IJCRCST © 2016 | All Rights Reserved www.ijcrcst.com

997

D.V. SubbaRao et al. [14] proposed checkpointing algorithm

combined with selective sender based message logging. This

algorithm is free from problem of lost messages. This

algorithm tolerates permanent faults in the presence of other

processors. In their absence it tolerates only transient failures.

The term selective implies that messages are logged only

within a specified interval known as active interval, thereby

reducing message logging

III. FAULT TOLERANCE STRATEGIES
A fault tolerance strategy is a technique that a fault tolerant

system uses either for error recovery, system repair or

minimizing the impact of future failure on the overall system

computation. We discuss widely-used fault tolerance strategies

below.

 Restart: This is the simplest fault tolerance strategy.

Restart resets a computation from the beginning when an

error is detected. Restart can be applied locally or

globally. Local restarts reset only the computation of

system components that are affected by the error, while

global restarts reset the entire computation of the system.

 Check pointing: Check pointing regularly saves the state

of a system computation on a stable storage at

predetermined intervals. This strategy is usually

combined with other strategies like roll-back and

migration.

 Roll-back: Roll-back is used in conjunction with check

pointing. If the state of a system computation is

checkpointed before an error is detected in the

computation, then the computation will be rolled-back to

the last stable checkpoint.

 Roll-forward: Roll-forward takes the computation of a

failed system forward by correcting the damage that is

caused by an error(s) to the overall system computation.

Roll-forward is also known as forward error recovery.

 Migration: Migration is combined with checkpointing

and roll-back. When an event that may lead to error is

detected in a checkpointed system, then the computation

of the system will be migrated to a new execution

environment. In the new environment, the computation of

the system will be restored from the last checkpoint.

 Rejuvenation: Rejuvenation is concerned with gradually

terminating the computation of a system and then

restarting or rolling-back the system immediately at

potentially fault-free state. The objective of rejuvenation

is to minimize the impact of transient faults on the

computation of a system.

 Replication: Replication is concerned with

simultaneously executing multiple identical replicas of a

system. Replication serves two purposes: it almost

guarantees at least one of the replicas will complete, and

it enables voting based error detection mechanism by

comparing the results of multiple replicas.

 Redundancy: Redundancy manages failure using

primary-backup approach. Each system, usually a service

or hardware, has a primary replica, and one or more

backup replicas. During computation, the primary replica

regularly sends its status to the backup replicas. In the

event of the primary replica failure, one of the backup

replicas takes the role of the primary replica. Redundancy

is also known as primary-backup replication,

 Standby spare: Standby spare uses alternative or standby

system components to ensure the computation of a system

ends in success [16]. If a system component fails, then it

will be replaced by a component that can carry out the

functions of the failed component.

 N-version: In the N-version fault tolerance strategy, the

function of a system is implemented using N different

methods [15]. All versions of the system are executed

simultaneously. Then, the outputs of all or a subset of

these executions will be examined to determine whether

the system completes successfully or not.

IV. RECOVERY-AWARE COMPONENT-

BASED SYSTEM
A Recovery-Aware Component-Based System

(RACS) is a fault tolerant grid system that realizes the RAC

approach. A RACS provides fault tolerance support to RAC-

based grid applications. It also provides an experiment testbed

for evaluating the reliability of RAC-based grid applications.

Figure 2 shows a UML [17] component diagram of a RACS

reference architecture, which describes not only the structural

relationship between the components of a RACS but also their

mappings into a grid infrastructure. The components of a

RACS are Head Manager, Compute Manager, Predictor,

Injector, and Recovery-aware component. The roles of these

components, their interactions, and their deployment on a grid

infrastructure are discussed in subsequent sections.

Figure 2: RACS Reference Architecture

In the RACS reference architecture, a grid infrastructure is

depicted as being an execution environment with one head

node and multiple compute nodes. By representing a grid

infrastructure in this way, we are implying neither the

compute nodes are under the management of the head node

nor the compute nodes are homogeneous. The head node

represents an entity, such as Xgrid controller, that is in charge

of allocating the required grid resources to the activities of a

grid application. A compute node represents any computing

grid resource.

The roles of the components of a RACS are as follows.

Recovery-aware component: A recovery-aware component,

as introduced previously, is a normal grid application

 International Journal of Contemporary Research in Computer Science and Technology (IJCRCST) e-ISSN: 2395-5325
Volume 2, Issue 9 (September ’2016)

 IJCRCST © 2016 | All Rights Reserved www.ijcrcst.com

998

component that has an additional interface for controlling

some aspects of its fault tolerance affairs.

Injector: An injector introduces simulated and real faults into

recovery-aware components and their execution environment.

The injector is activated if a RACS is to be used as a fault

tolerance testbed. The scope of fault injection is limited by the

required type of failure simulation. For simulating a host

crash, for example, the injector kills all currently running

recovery aware components on a given compute node. On the

other hand, a CPU failure in a multi-core compute node is

simulated by randomly choosing and terminating a recovery-

aware component that is being executed.

Predictor: A predictor assesses the health of the currently

running grid application and its environment, and then

forecasts impending failures. A prediction has four possible

outcomes (the sum of the probability of the prediction

outcomes is 1):

 True Negative: Failure is not imminent and is predicted to

be non-imminent.

 False Negative: Failure is imminent but is predicted to be

non-imminent.

 True Positive: Failure is imminent and is predicted to be

imminent.

 False Positive: Failure is not imminent but is predicted to

be imminent.

Compute Manager: A compute manager is responsible for

starting predictors and injectors, and deciding when and how

to take action to recover from or proactively prevent failure.

The compute manager sets the frequency of failure prediction

and fault injection, and notifies injectors the scope of fault

introduction (simulating node failure vs. CPU failure). When a

predictor makes a positive failure prediction, the compute

manager either warns affected recovery-aware components to

take necessary action or executes a proactive fault tolerance

strategy on their behalf. The compute manager expects regular

health updates from the recovery-aware components that are

under its management. If some of the recovery-aware

components fail to send health updates, the compute manager

marks those components as failed and executes a reactive fault

tolerance strategy.

Head Manager: The head manager is responsible for starting

compute managers. It also prepares detailed fault tolerance

policies based on which compute managers make fault

tolerance decisions. A fault tolerance policy includes the types

of reactive and proactive strategies to be executed, the

frequency of prediction and heart beat monitoring, and other

fault tolerance related instructions. These policies can either

be provided during the configuration of the head manager,

system FT policy, or the submission of a grid application for

execution, user FT policy.

V. FAULT TOLERANCE MANAGEMENT

The type of the fault tolerance support depends on the selected

RAC architecture and fault tolerance strategy. Therefore, we

identify each support using the type of the RAC architecture

and the fault tolerance strategy with which the architecture is

paired. For example, if the managers in MR-specific

architecture handle failure using replication, then the fault

tolerance support is referred to as the MR-specific replication-

based RAC.

 Restart-based RAC: The restart-based RAC manages

failure only reactively. The generic restart-based RAC

restarts a failed activity whose computation does not

depend on previously completed activities, whereas both

the MR-specific restart-based RAC and the CL-specific

restart-based RAC can restart any failed MR and CL

activity, respectively.

 Replication-based RAC: The replication-based RAC

manages failure only proactively. If an activity is

predicted to fail, then the replica of the activity will be

executed. If the impending failure of the activity is not

predicted prior to the activity's failure, no attempt is made

to recover the activity. In the replication-based RAC, at

most two replicas of an activity are simultaneously

executed. If a positive prediction is made while the two

replicas are being executed, no more replica is

instantiated even if the maximum replica limit is not

reached. The generic replication-based RAC can replicate

an activity only if the activity does not depend on other

activities, whereas the MR-specific replication based

RAC and the CL-specific replication-based RAC can

replicate any MR and CL activity, respectively.

 Check pointing-based RAC: The check pointing-based

RAC manages failure proactively and reactively. The

check pointing-based RAC saves the current state of an

activity whenever the activity is predicted to fail. If/when

the activity fails, the activity is rolled-back to the last

checkpoint. Unlike the restart and the replication

counterparts, the generic check pointing-based RAC can

recover the failure of any type of activity provided that

specific conditions are met. If an activity that depends on

a previously completed activity fails and the activity is

check pointed before its failure, then the generic check

pointing-based RAC recovers the failed activity. The MR-

specific checkpointing based RAC and the CL-specific

check pointing-based RAC can, with no restriction,

manage the failure of any MR and CL activity,

respectively.

VI.RAC ARCHITECTURE EXPERIMENTS IN

COMBINATIONAL LOGIC

The generic and the architecture-specific RAC approaches

improve the reliability of MR and CL grid applications. Such

reliability improvement, nevertheless, comes at the expense of

increased cost of execution. The extent of the reliability

improvement and the overhead of providing such

improvement depend on the type of the RAC architecture

(generic, MR-specific, CL-specific), and the fault tolerance

strategy with which the RAC architecture is paired. We

present the reliability improvement that MR and CL grid

applications would gain by adapting the RAC.

a) Restart-Based RAC

The CL-specific restart-based and the generic restart-based

RAC improve the reliability of a CL application execution.

The CL-specific restart-based RAC provides, as shown in

 International Journal of Contemporary Research in Computer Science and Technology (IJCRCST) e-ISSN: 2395-5325
Volume 2, Issue 9 (September ’2016)

 IJCRCST © 2016 | All Rights Reserved www.ijcrcst.com

999

Figure 3, a more reliable execution of a CL grid application

than the generic restart-based RAC. This is the result of the

CL-specific RAC being able to handle the failure of any

activity, and the inability of the generic RAC to manage the

failure of an activity whose execution depends on previously

completed computations. Hereafter we refer to an activity

whose computation depends on previously completed

activities as a successor activity.

(a) FilterBank.

(b) FilterBank. Failure towards the end.

(c) Tgff

(d) Spatial Matching.

Figure 3: The reliability-overhead tradeoff of the generic and

the CL-specific RAC: The inset figures magnify selected data

to show the relationship between the plotted fault tolerance

support types whose plots are overlapped on the scale of the

outer figure.

b) Replication-Based RAC

The CL-specific replication-based and the generic replication-

based RAC improve the reliability of a CL application

execution. However, their performance is limited by their

inability to recover a failed activity. With an increase in the

probability of activity failure, as shown in Figures 3a, 3c, and

3d, more and more activities fail before their impending

failure can be predicted. Unless a prediction is made, the

replica of an activity will not be instantiated. Despite an

increase in the probability of activity failure, as shown in

Figure 3b, if a proactive strategy can be executed prior to the

failure of any CL activity and the cause of the failure is a

transient fault, the CL-specific replication-based RAC

guarantees a 100% reliable computation.The CL-specific

replication-based provides a more reliable CL computation,

and introduces a higher overhead than the generic replication-

based RAC. The relationship between these fault tolerance

support types is similar to the one between the generic and the

CL-specific variants of the restart-based RAC.

c) Check pointing-Based RAC

Both variants of the check pointing-based RAC improve the

reliability of a CL application execution. The CL-specific

check pointing-based RAC generally provides a more reliable

CL computation than the generic check pointing-based RAC.

This is due to the inability of the generic check pointing-based

RAC to recover a successor activity that was not check

pointed before its failure. However, if the activities of a CL

application fail only towards the end of their computation or if

the application is not complex, then both fault tolerance

support types provide almost equally reliable CL

computations. In the case when a successor activity fails only

towards the end of the computation, the likelihood of the

activity to have been check pointed is high. Given an activity

fails after completing 95% of its computation, under the

default parameter settings, where the prediction interval is 5%

of a CL activity execution time and the probability of positive

predictions is 0.5, there will be 19 predictions before the

activity fails. Roughly half of these predictions will be

positive, and therefore cause the activity to be check pointed.

Once a successor activity is check pointed, the generic check

pointing-based RAC can manage its failure.

 International Journal of Contemporary Research in Computer Science and Technology (IJCRCST) e-ISSN: 2395-5325
Volume 2, Issue 9 (September ’2016)

 IJCRCST © 2016 | All Rights Reserved www.ijcrcst.com

1000

The complexity of a CL application is a good indicator of the

extent of the presence of successor activities in the

application. As the complexity of a CL application increases,

from Spatial Matching to Filter Bank, the number of successor

activities in the application increases as well. The more

complex the application is, the less manageable its failure will

be by the generic check pointing-based RAC, and vice versa.

The overhead of the CL-specific check pointing-based RAC is

marginally higher than the overhead of the generic check

pointing-based RAC, even when the reliability gap between

the two is significant. Figure 3a, for example, shows that as

the probability of activity failure increases, the difference

between the two fault tolerance support types with respect to

reliability increases at a faster speed than with respect to

overhead. As long as an activity is check pointed, the generic

and the CL-specific RAC put equivalent effort to handle its

failure. Under the default parameter settings, many of the

activities of the benchmark CL applications are check pointed

more often than not, and thus we observe marginally equal

overhead. However, due to the non-zero probability of false

negative predictions, there are successor activities that will fail

before they can be check pointed. As discussed previously, the

presence of such activities deteriorates the overall reliability of

the application whose failure is managed by the generic check

pointing-based RAC.

VII. CONCLUSION

This research contributes the RAC approach, which is a fault

tolerance approach that manages failure at the component

level, combines reactive and proactive fault tolerance

strategies, assumes runtime prediction with proactive failure

management, and provides customized fault tolerance support

based on the classification of the architecture of a grid

application. Further, the project provides parameterized

Markov models and testbed for reliability and overhead

analyses. We have used the testbed for evaluating the

reliability-overhead tradeoff of the RAC approach. Via

simulated experiment, we have confirmed that the

architecture-specific fault tolerance support provides higher

reliability improvement and incurs higher overhead to grid

applications than the architecture-unaware one. The degree of

the reliability improvement of the architecture-specific support

over the architecture-unaware one depends on factors like the

type of the fault tolerance strategy selected and its parameters,

and the accuracy of a predictor.

REFERENCE

[1]. Feilong Tang, Minglu Li, and Joshua Zhexue Huang.

“Real-time transaction Processing for autonomic Grid

applications,”Engineering Application of Artificial

Intelligence 17(2004), pp.799-807, China, 2004.

[2]. Xiaolong Jin, and Jiming Liu, “Characterizing

autonomic task distribution and Handling in grids,”

Engineering Application of Artificial Intelligence

17(2004), Pp.809-823, Hong Kong, 2004.

[3]. Rainer Unland, and Huaglory Tianfield, “ Towards

Autonomic computing Systems,” Engineering

Application of Artificial Intelligence 17(2004), pp.689-

699, Germany, 2004.

[4]. Eser Kandogan, John Bailey Rob Barrett, and Paul p.

Maglio, “Usable autonomic computing systems: the

system administrators’ perspective,” In Advance

Engineering Informatics 19, pp.213-221, Nov 2005.

[5]. L. Kumar, M. Misra, R.C. Joshi, “Low overhead

optimal checkpointing for mobile distributed systems”

Proceedings. 19
th

 IEEE International Conference on

Data Engineering, pp 686 – 88, 2003.

[6]. Wang Y. and Fuchs, W.K., “Lazy Checkpoint

Coordination for Bounding Rollback Propagation,”

Proc. 12th Symp. Reliable Distributed Systems, pp. 78-

85, Oct. 1993.

[7]. Lalit Kumar, Parveen Kumar, R K Chauhan, “Pitfalls in

Minimum-process Coordinated Checkpointing

protocols for Mobile Distributed”, ACCST Journal of

Research, Volume III, No. 1, 2005 pp. 51-56.

[8]. R K Chauhan, Parveen Kumar, Lalit Kumar, “Non-

intrusive Coordinated Checkpointing Protocols for

Mobile Computing Systems : A Critical Survey,

ACCST Journal of Research, to be published in

Volume IV, No. 3, 2006.

[9]. Pourmahmoud, S. Asbaghi, S. Haghighat, A.T. “23
rd

International Symposium on Computer and Information

Sciences”, 2008.

[10]. Koo. R. and S.Toueg..Checkpointing and Rollback-

Recovery for Distributed Systems. .IEEE Transactions

on Software Engineering, SE- 13(1):23-31, January

1987.

[11]. Silva L, Silva J 1992 Global checkpointing for

distributed programs. Proc. IEEE 11th Symp.On

Reliable Distributed Syst. pp 155-162.

[12]. J.L. Kim and T. Park. "An efficient protocol for

checkpointing recovery in Distributed Systems" IEEE

Transaction On Parallel and Distributed Systems,

4(8):pp.955-960, Aug 1993.

[13]. Prakash R. and SinghalM.Low-Cost Checkpointingand

Failure Recovery in Mobile Computing Systems. ,IEEE

Transaction On Parallel and Distributed Systems, vol.

7,no. 10, pp. 1035- 1048, October1996.

[14]. Chandy K. M. and Lamport L., "Distributed Snapshots:

Determining Global State of Distributed Systems,"

ACM Transaction on Computing Systems, vol. 3, No.

1, pp. 63-75, February 1985.

[15]. D.V. SubbaRao and MM Naidu: A new, efficient

corrdinatedcheckpointing protocol combined with

selective sender based message logging, IEEE, 2008,

Page(s): 444 – 447.

[16]. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr.

Basic Concepts and Taxonomy of Dependable and

Secure Computing. Dependable and Secure Computing,

IEEE Transactions on, 1(1):11 { 33, 2004. Cited on

pages 24 and 25.

[17]. P. Jalote. Fault Tolerance in Distributed Systems.

Prentice Hall, Englewood Cli_, New Jersey, 1994.

Cited on pages 26, 27, 28, 29, and 38.

