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Abstract: Grids are distributed systems that dynamically coordinate a large number of heterogeneous resources to 
execute large scale projects involving collaborating teams of scientists, high performance computers, massive data 
stores, high bandwidth networking, and/or scientific instruments like telescopes, and synchrotrons. Failure in grids is 
arguably inevitable due to the massive scale and the heterogeneity of grid resources, the distribution of these 
resources over unreliable networks, the complexity of mechanisms that are needed to integrate such resources into 
a seamless utility, and the dynamic nature of the grid infrastructure that allows continuous changes to happen. In 
this thesis, we propose the Recovery-Aware Components (RAC) approach. The RAC approach enables a grid 
application to tolerate failure reactively and proactively at the level of the smallest and independent execution unit 
of the application. The approach also combines runtime prediction with a proactive fault tolerance strategy. By 
managing failure at the smallest execution unit, and combining runtime prediction with a proactive fault tolerance 
strategy, the RAC approach aims at improving the reliability of the grid application with the least overhead possible. 
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I.INTRODUCTION 
Grid is a type of parallel and distributed system that enables 

the sharing, selection, and aggregation of geographically 

distributed "autonomous" resources dynamically at runtime 

depending on their availability, capability, performance, cost, 

and users' quality of service requirements. Grid computing, 

most simply stated, is distributed computing taken to the next 

evolutionary level. The goal is to create the illusion of a 

simple yet large and powerful self-managing virtual computer 

out of a large collection of connected heterogeneous systems 

sharing various combinations of resources. Grid is a collection 

of distributed resources connected by a network, possibly at 

different sites and in different organizations. Those resources 

may include supercomputers, instruments such as telescopes 

and microscopes, computer-controlled factory floor tools, 

mid- level servers, desktop machines, laptop etc [1]. A grid 

usually connects huge number of computers over the Internet 

as a complex computational System. Here numerous tasks are 

distributed to grid nodes in decentralized fashion. It contains 

five Components [2].Like A portal, A service broker, Task 

scheduler, A task manager and A group of grid node. The 

portal acts as a user interface, through which user can log in 

and use the grid. After having logged into the grid, a user can 

submit a task. The service broker will check whether or not 

the grid possesses resources suitable for handling the 

submitted task. If so, it will further check whether or not the 

resources are available now. The task scheduler is responsible 

for scheduling submitted tasks to be served. The task manager 

finally launches a submitted task. The nodes, as the core of a 

grid, are prerequisites. Grid nodes can be desktops, 

workstations, and clusters that belong to different LANs, 

WANs, or the Internet. 

 

Grid Architecture: In grid computing, many thousands of 

small-distributed computing networks would be linked over 

worldwide grids in a Web like system resembling a public 

utility’s power grid [3]. That will let businesses send data 

transfer, share software more easily and store even more 

information than today’s computer networks. The 

development of Grid-enabled applications presents a 

significant challenge, however, because of the high degree of 

heterogeneity and dynamic behavior in architecture, 

mechanisms, and performance encountered in Grid 

environment. The Grid is made up of a number of components 

from enabling resources to end user applications. A layered 

architecture of the Grid and its components are shown in the 

following, Figure 1. 

 

 

 

 

 

 

 

 

 

Figure 1: Grid Layer Architecture 

Grid computing technologies enable controlled resource 

sharing in distributed communities and the coordinated use of 

those shared resources as community members tackle common 

goals. These technologies include new protocols, services, and 

APIs for secure resource access, resource management, fault 

detection, communication, and so forth that in term enable 

new application concepts such as virtual data, smart 

instruments. A computational grid can be modeled using 4-

layer architecture as (1) Grid fabric, (2) Core Grid 

Middleware, (3) Grid Tools, and (4) Grid Fabric [4].  Grid 
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Fabric is consists of all the globally distributed resources that 

are accessible from anywhere on the Internet. These resources 

could be computers (such as PCs, SMPs, clusters) running a 

variety of operating systems (such as UNIX or Windows) as 

well as resource management systems such as LSF (Load 

Sharing Facility), Condor, PBS (Portable Batch System) or 

SGE (Sun Grid Engine), storage devices, databases, and 

special scientific instruments such as a radio telescope or 

particular heat sensor. Core Grid Middleware offers core 

services such as remote process management, coallocation of 

resources, storage access, information registration and 

discovery, security and aspects of Quality of Service (QOS) 

such as resource reservation and trading. Grid Tools (User-

Level Grid Middleware) includes application development 

environments, programming tools, and resource brokers for 

managing resources and scheduling application tasks for 

execution on global resources.  Grid Applications consists of 

Grid applications or portals. Grid applications are typically 

developed using Grid-enabled languages and utilities such as 

MPI (message passing interface) or Nimrod parameter 

specification language. An example application, such as 

parameter simulation or grand-challenge problem would 

require computational powers, access to remote data sets, and 

may need to interact with scientific instruments. Grid portals 

offer Web-enabled application services, where the users can 

submit and collect results for their jobs on remote resources 

through the Web.  

 

 II.LITERATURE REVIEW  

Kumar-et al [5] proposed a non-blocking checkpointing 

algorithm based on keeping track of direct dependencies of 

processes. Each process maintains a direct dependency vector. 

In their scheme, initiator process collects the direct 

dependency vectors of all processes, computes minimum set, 

and sends the checkpoint request along with the minimum set 

to relevant processes. This reduces the time to take the 

checkpoints. If new dependencies are created during 

checkpointing process, those are updated and updated 

minimum set is formed. 

 

Wang and Fuchs [6] proposed a coordinated checkpointing 

scheme in which they incorporated the technique of lazy 

checkpoint coordination into an uncoordinated checkpointing 

protocol for bounding rollback propagation Recovery line 

progression is made by performing communication induced 

checkpoint coordination only when predetermined consistency 

criterion is violated. The notation of laziness provides a trade 

off between extra checkpoints during normal execution and 

average rollback distance for recovery. 

 

L K Awasthi-Kumar [7] proposed a minimum process 

coordinated checkpointing protocol for mobile distributed 

systems. Where the number of useless checkpoint and the 

blocking of processes are reduced using the probabilistic 

approach and by computing the tentative minimum set in the 

beginning. This algorithm is the first one to combine and non-

blocking scheme in one algorithm. 

 

Gupta et al. [8] proposed a single phase nonblocking 

coordinated checkpointing approach for mobile computing 

environment. In their algorithm, the processes are allowed to 

take  the permanent checkpoints directly without taking 

tentative checkpoints and whenever a process is busy, the 

process takes a checkpoint after the completion of current 

procedure. However, this scheme has the disadvantage that it 

does consider the case of failure during the checkpointing 

operation which may result in the inconsistent states of the 

processes. 

 

Koo-Toueg's et al.[9] proposed a minimum process blocking 

checkpointing algorithm for distributed systems. The 

algorithm consists of two phases. During the first phase, the 

checkpoint initiator identifies all resources with which it has 

communicated since the last checkpoint and sends them a 

request. Upon receiving the request, each resource in turn 

identifies all resource it has communicated with since the last 

checkpoint and sends them a request, and so on, until no more 

resource can be identified. During the second phase, all 

resource identified in the first phase take a checkpoint.  

 

Silva L et al. [10] proposed Global checkpointing for all 

process in distributed systems. It is achieved by piggybacking 

monotonically increasing checkpoint number along with 

computational message. When a process receives a 

computational message with the high checkpoint number, it 

consider that checkpoint before processing the message. If 

each process allowed to initiate the checkpoint operation, the 

network may be flooded with control messages and 

unnecessary checkpoints. In order to avoid this, the proposed 

event allows one process to initiate checkpointing. The 

checkpoint event changes periodically by a local timer 

mechanism. When this timer expires, the initiator process 

broadcast checkpoint message to all other process.  

 

J.L. Kim et al.[11] developed a new efficient synchronized 

checkpointing protocol which exploits the dependencies 

between processes in distributed systems. In this protocol, a 

process takes a checkpoint where all other processes agrees for 

same checkpoint and hence the process need not always wait 

for the decision made by the checkpointing coordinator as they 

are conventional synchronized protocols.  

 

Prakash-Singhal et al.[12] proposed low-level checkpointing 

algorithm was to combine two approaches. More specifically, 

it forces only a minimum number of processes to take 

checkpoints and does not block the underlying computation 

during checkpointing. It forces only part of processes to take 

checkpoints, the carrier sense of some processes may be out-

of-date, and may not be able to avoid inconsistencies. 

Therefore this algorithm attempts to solve this problem by 

having each process maintains an array to save the problem.  

 

Chandy et al.[13] proposed a global snapshot algorithm for 

distributed systems. It is observed that every checkpointing 

algorithm proposed for message passing system. The global 

state is constructed by coordinating all the resources and 

logging the channel state at the time of checkpointing. Special 

messages called markers are used for coordination and for 

identifying the messages originating at different checkpointing 

intervals.  
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D.V. SubbaRao et al. [14] proposed checkpointing algorithm 

combined with selective sender based message logging. This 

algorithm is free from problem of lost messages. This 

algorithm tolerates permanent faults in the presence of other 

processors. In their absence it tolerates only transient failures. 

The term selective implies that messages are logged only 

within a specified interval known as active interval, thereby 

reducing message logging 

  

III. FAULT TOLERANCE STRATEGIES 
A fault tolerance strategy is a technique that a fault tolerant 

system uses either for error recovery, system repair or 

minimizing the impact of future failure on the overall system 

computation. We discuss widely-used fault tolerance strategies 

below. 

 Restart: This is the simplest fault tolerance strategy. 

Restart resets a computation from the beginning when an 

error is detected. Restart can be applied locally or 

globally. Local restarts reset only the computation of 

system components that are affected by the error, while 

global restarts reset the entire computation of the system. 

 Check pointing: Check pointing regularly saves the state 

of a system computation on a stable storage at 

predetermined intervals. This strategy is usually 

combined with other strategies like roll-back and 

migration.  

 Roll-back: Roll-back is used in conjunction with check 

pointing. If the state of a system computation is 

checkpointed before an error is detected in the 

computation, then the computation will be rolled-back to 

the last stable checkpoint. 

 Roll-forward: Roll-forward takes the computation of a 

failed system forward by correcting the damage that is 

caused by an error(s) to the overall system computation. 

Roll-forward is also known as forward error recovery.  

 Migration: Migration is combined with checkpointing 

and roll-back. When an event that may lead to error is 

detected in a checkpointed system, then the computation 

of the system will be migrated to a new execution 

environment. In the new environment, the computation of 

the system will be restored from the last checkpoint.  

 Rejuvenation: Rejuvenation is concerned with gradually 

terminating the computation of a system and then 

restarting or rolling-back the system immediately at 

potentially fault-free state. The objective of rejuvenation 

is to minimize the impact of transient faults on the 

computation of a system.  

 Replication: Replication is concerned with 

simultaneously executing multiple identical replicas of a 

system. Replication serves two purposes: it almost 

guarantees at least one of the replicas will complete, and 

it enables voting based error detection mechanism by 

comparing the results of multiple replicas. 

 Redundancy: Redundancy manages failure using 

primary-backup approach. Each system, usually a service 

or hardware, has a primary replica, and one or more 

backup replicas. During computation, the primary replica 

regularly sends its status to the backup replicas. In the 

event of the primary replica failure, one of the backup 

replicas takes the role of the primary replica. Redundancy 

is also known as primary-backup replication, 

 Standby spare: Standby spare uses alternative or standby 

system components to ensure the computation of a system 

ends in success [16]. If a system component fails, then it 

will be replaced by a component that can carry out the 

functions of the failed component. 

 N-version: In the N-version fault tolerance strategy, the 

function of a system is implemented using N different 

methods [15]. All versions of the system are executed 

simultaneously. Then, the outputs of all or a subset of 

these executions will be examined to determine whether 

the system completes successfully or not. 

  

IV. RECOVERY-AWARE COMPONENT-

BASED SYSTEM 
A Recovery-Aware Component-Based System 

(RACS) is a fault tolerant grid system that realizes the RAC 

approach. A RACS provides fault tolerance support to RAC-

based grid applications. It also provides an experiment testbed 

for evaluating the reliability of RAC-based grid applications. 

Figure 2 shows a UML [17] component diagram of a RACS 

reference architecture, which describes not only the structural 

relationship between the components of a RACS but also their 

mappings into a grid infrastructure. The components of a 

RACS are Head Manager, Compute Manager, Predictor, 

Injector, and Recovery-aware component. The roles of these 

components, their interactions, and their deployment on a grid 

infrastructure are discussed in subsequent sections. 

 

 
Figure 2: RACS Reference Architecture 

 

In the RACS reference architecture, a grid infrastructure is 

depicted as being an execution environment with one head 

node and multiple compute nodes. By representing a grid 

infrastructure in this way, we are implying neither the 

compute nodes are under the management of the head node 

nor the compute nodes are homogeneous. The head node 

represents an entity, such as Xgrid controller, that is in charge 

of allocating the required grid resources to the activities of a 

grid application. A compute node represents any computing 

grid resource. 

 

The roles of the components of a RACS are as follows. 

 

Recovery-aware component: A recovery-aware component, 

as introduced previously, is a normal grid application 
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component that has an additional interface for controlling 

some aspects of its fault tolerance affairs. 

 

Injector: An injector introduces simulated and real faults into 

recovery-aware components and their execution environment. 

The injector is activated if a RACS is to be used as a fault 

tolerance testbed. The scope of fault injection is limited by the 

required type of failure simulation. For simulating a host 

crash, for example, the injector kills all currently running 

recovery aware components on a given compute node. On the 

other hand, a CPU failure in a multi-core compute node is 

simulated by randomly choosing and terminating a recovery-

aware component that is being executed. 

 

Predictor: A predictor assesses the health of the currently 

running grid application and its environment, and then 

forecasts impending failures. A prediction has four possible 

outcomes (the sum of the probability of the prediction 

outcomes is 1): 

 True Negative: Failure is not imminent and is predicted to 

be non-imminent. 

 False Negative: Failure is imminent but is predicted to be 

non-imminent. 

 True Positive: Failure is imminent and is predicted to be 

imminent. 

 False Positive: Failure is not imminent but is predicted to 

be imminent. 

 

Compute Manager: A compute manager is responsible for 

starting predictors and injectors, and deciding when and how 

to take action to recover from or proactively prevent failure. 

The compute manager sets the frequency of failure prediction 

and fault injection, and notifies injectors the scope of fault 

introduction (simulating node failure vs. CPU failure). When a 

predictor makes a positive failure prediction, the compute 

manager either warns affected recovery-aware components to 

take necessary action or executes a proactive fault tolerance 

strategy on their behalf. The compute manager expects regular 

health updates from the recovery-aware components that are 

under its management. If some of the recovery-aware 

components fail to send health updates, the compute manager 

marks those components as failed and executes a reactive fault 

tolerance strategy. 

 

Head Manager: The head manager is responsible for starting 

compute managers. It also prepares detailed fault tolerance 

policies based on which compute managers make fault 

tolerance decisions. A fault tolerance policy includes the types 

of reactive and proactive strategies to be executed, the 

frequency of prediction and heart beat monitoring, and other 

fault tolerance related instructions. These policies can either 

be provided during the configuration of the head manager, 

system FT policy, or the submission of a grid application for 

execution, user FT policy. 

 

V. FAULT TOLERANCE MANAGEMENT 
 

The type of the fault tolerance support depends on the selected 

RAC architecture and fault tolerance strategy. Therefore, we 

identify each support using the type of the RAC architecture 

and the fault tolerance strategy with which the architecture is 

paired. For example, if the managers in MR-specific 

architecture handle failure using replication, then the fault 

tolerance support is referred to as the MR-specific replication-

based RAC.  

 Restart-based RAC: The restart-based RAC manages 

failure only reactively. The generic restart-based RAC 

restarts a failed activity whose computation does not 

depend on previously completed activities, whereas both 

the MR-specific restart-based RAC and the CL-specific 

restart-based RAC can restart any failed MR and CL 

activity, respectively.  

 Replication-based RAC: The replication-based RAC 

manages failure only proactively. If an activity is 

predicted to fail, then the replica of the activity will be 

executed. If the impending failure of the activity is not 

predicted prior to the activity's failure, no attempt is made 

to recover the activity. In the replication-based RAC, at 

most two replicas of an activity are simultaneously 

executed. If a positive prediction is made while the two 

replicas are being executed, no more replica is 

instantiated even if the maximum replica limit is not 

reached. The generic replication-based RAC can replicate 

an activity only if the activity does not depend on other 

activities, whereas the MR-specific replication based 

RAC and the CL-specific replication-based RAC can 

replicate any MR and CL activity, respectively. 

 Check pointing-based RAC: The check pointing-based 

RAC manages failure proactively and reactively. The 

check pointing-based RAC saves the current state of an 

activity whenever the activity is predicted to fail. If/when 

the activity fails, the activity is rolled-back to the last 

checkpoint. Unlike the restart and the replication 

counterparts, the generic check pointing-based RAC can 

recover the failure of any type of activity provided that 

specific conditions are met. If an activity that depends on 

a previously completed activity fails and the activity is 

check pointed before its failure, then the generic check 

pointing-based RAC recovers the failed activity. The MR-

specific checkpointing based RAC and the CL-specific 

check pointing-based RAC can, with no restriction, 

manage the failure of any MR and CL activity, 

respectively. 

 

VI.RAC ARCHITECTURE EXPERIMENTS IN 

COMBINATIONAL LOGIC 
 

The generic and the architecture-specific RAC approaches 

improve the reliability of MR and CL grid applications. Such 

reliability improvement, nevertheless, comes at the expense of 

increased cost of execution. The extent of the reliability 

improvement and the overhead of providing such 

improvement depend on the type of the RAC architecture 

(generic, MR-specific, CL-specific), and the fault tolerance 

strategy with which the RAC architecture is paired. We 

present the reliability improvement that MR and CL grid 

applications would gain by adapting the RAC. 

 

a) Restart-Based RAC 

The CL-specific restart-based and the generic restart-based 

RAC improve the reliability of a CL application execution. 

The CL-specific restart-based RAC provides, as shown in 
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Figure 3, a more reliable execution of a CL grid application 

than the generic restart-based RAC. This is the result of the 

CL-specific RAC being able to handle the failure of any 

activity, and the inability of the generic RAC to manage the 

failure of an activity whose execution depends on previously 

completed computations. Hereafter we refer to an activity 

whose computation depends on previously completed 

activities as a successor activity. 

 
(a) FilterBank. 

 
(b) FilterBank. Failure towards the end. 

 
(c) Tgff 

 

(d) Spatial Matching. 

Figure 3: The reliability-overhead tradeoff of the generic and 

the CL-specific RAC: The inset figures magnify selected data 

to show the relationship between the plotted fault tolerance 

support types whose plots are overlapped on the scale of the 

outer figure. 

 

b) Replication-Based RAC 

The CL-specific replication-based and the generic replication-

based RAC improve the reliability of a CL application 

execution. However, their performance is limited by their 

inability to recover a failed activity. With an increase in the 

probability of activity failure, as shown in Figures 3a, 3c, and 

3d, more and more activities fail before their impending 

failure can be predicted. Unless a prediction is made, the 

replica of an activity will not be instantiated. Despite an 

increase in the probability of activity failure, as shown in 

Figure 3b, if a proactive strategy can be executed prior to the 

failure of any CL activity and the cause of the failure is a 

transient fault, the CL-specific replication-based RAC 

guarantees a 100% reliable computation.The CL-specific 

replication-based provides a more reliable CL computation, 

and introduces a higher overhead than the generic replication-

based RAC. The relationship between these fault tolerance 

support types is similar to the one between the generic and the 

CL-specific variants of the restart-based RAC.  

 

c) Check pointing-Based RAC  

Both variants of the check pointing-based RAC improve the 

reliability of a CL application execution. The CL-specific 

check pointing-based RAC generally provides a more reliable 

CL computation than the generic check pointing-based RAC. 

This is due to the inability of the generic check pointing-based 

RAC to recover a successor activity that was not check 

pointed before its failure. However, if the activities of a CL 

application fail only towards the end of their computation or if 

the application is not complex, then both fault tolerance 

support types provide almost equally reliable CL 

computations. In the case when a successor activity fails only 

towards the end of the computation, the likelihood of the 

activity to have been check pointed is high. Given an activity 

fails after completing 95% of its computation, under the 

default parameter settings, where the prediction interval is 5% 

of a CL activity execution time and the probability of positive 

predictions is 0.5, there will be 19 predictions before the 

activity fails. Roughly half of these predictions will be 

positive, and therefore cause the activity to be check pointed. 

Once a successor activity is check pointed, the generic check 

pointing-based RAC can manage its failure. 
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The complexity of a CL application is a good indicator of the 

extent of the presence of successor activities in the 

application. As the complexity of a CL application increases, 

from Spatial Matching to Filter Bank, the number of successor 

activities in the application increases as well. The more 

complex the application is, the less manageable its failure will 

be by the generic check pointing-based RAC, and vice versa. 

The overhead of the CL-specific check pointing-based RAC is 

marginally higher than the overhead of the generic check 

pointing-based RAC, even when the reliability gap between 

the two is significant. Figure 3a, for example, shows that as 

the probability of activity failure increases, the difference 

between the two fault tolerance support types with respect to 

reliability increases at a faster speed than with respect to 

overhead. As long as an activity is check pointed, the generic 

and the CL-specific RAC put equivalent effort to handle its 

failure. Under the default parameter settings, many of the 

activities of the benchmark CL applications are check pointed 

more often than not, and thus we observe marginally equal 

overhead. However, due to the non-zero probability of false 

negative predictions, there are successor activities that will fail 

before they can be check pointed. As discussed previously, the 

presence of such activities deteriorates the overall reliability of 

the application whose failure is managed by the generic check 

pointing-based RAC. 

 

VII. CONCLUSION 

This research contributes the RAC approach, which is a fault 

tolerance approach that manages failure at the component 

level, combines reactive and proactive fault tolerance 

strategies, assumes runtime prediction with proactive failure 

management, and provides customized fault tolerance support 

based on the classification of the architecture of a grid 

application. Further, the project provides parameterized 

Markov models and testbed for reliability and overhead 

analyses. We have used the testbed for evaluating the 

reliability-overhead tradeoff of the RAC approach. Via 

simulated experiment, we have confirmed that the 

architecture-specific fault tolerance support provides higher 

reliability improvement and incurs higher overhead to grid 

applications than the architecture-unaware one. The degree of 

the reliability improvement of the architecture-specific support 

over the architecture-unaware one depends on factors like the 

type of the fault tolerance strategy selected and its parameters, 

and the accuracy of a predictor.   
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